Coursera
  • オンライン学位学士号と修士号の詳細を見る
  • MasterTrack™修士号取得に向けて単位を取得
  • 大学証明書大学院レベルの学習でキャリアアップを目指す
キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Advanced Statistics

    フィルター

    「advanced statistics」の441件の結果

    • Placeholder
      Johns Hopkins University

      Advanced Statistics for Data Science

      習得できるスキル: Probability & Statistics, General Statistics, Mathematics, Probability Distribution, Regression, Linear Algebra, Bayesian Statistics, Experiment, Econometrics, Machine Learning, Basic Descriptive Statistics, Biostatistics, Calculus, Statistical Tests, Algebra, Artificial Neural Networks, Dimensionality Reduction, Machine Learning Algorithms, Statistical Machine Learning, Communication, Correlation And Dependence, Data Analysis, Estimation, Exploratory Data Analysis, Statistical Analysis

      4.4

      (688件のレビュー)

      Advanced · Specialization · 3-6 Months

    • 無料

      Placeholder
      Georgia Institute of Technology

      Materials Data Sciences and Informatics

      習得できるスキル: Human Computer Interaction, Probability & Statistics, User Experience, Big Data, Computer Programming, Computer Programming Tools, Correlation And Dependence, Data Analysis, Data Management, Design and Product, Dimensionality Reduction, Experiment, General Statistics, Machine Learning, Python Programming, Statistical Programming

      4.5

      (308件のレビュー)

      Intermediate · Course · 1-3 Months

    • 無料

      Placeholder
      Nanjing University

      Data Processing Using Python

      習得できるスキル: Computer Programming, Python Programming, Computer Science, Data Structures, Theoretical Computer Science, Computational Thinking, Human Computer Interaction, User Experience, Statistical Programming

      4.1

      (305件のレビュー)

      Beginner · Course · 1-3 Months

    • Placeholder
      University of Colorado Boulder

      Business Analytics for Decision Making

      習得できるスキル: Data Analysis, Business Analysis, Machine Learning, Markov Model, Algorithms, Big Data, Data Analysis Software, Machine Learning Algorithms, Statistical Analysis, Theoretical Computer Science, Exploratory Data Analysis

      4.6

      (1.8k件のレビュー)

      Mixed · Course · 1-4 Weeks

    • Placeholder
      Coursera Project Network

      Analyze Survey Data with Tableau

      習得できるスキル: Data Analysis, Market Research

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Macquarie University

      Excel Skills for Business

      習得できるスキル: Business Analysis, Microsoft Excel, Spreadsheet Software, Data Analysis, Plot (Graphics), Data Visualization, Basic Descriptive Statistics, Computational Logic, Computer Architecture, Data Analysis Software, Data Management, Data Mining, Data Visualization Software, Extract, Transform, Load, Interactive Data Visualization, Mathematical Theory & Analysis, Mathematics, Theoretical Computer Science

      4.9

      (56.1k件のレビュー)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      SAS

      SAS Advanced Programmer

      習得できるスキル: SAS (Software), Statistical Programming, Data Management, Databases, SQL, Business Analysis, Spreadsheet Software, Computational Logic, Computer Programming, Mathematical Theory & Analysis, Mathematics, Programming Principles, Theoretical Computer Science, Big Data, Data Analysis, Computational Thinking

      4.8

      (303件のレビュー)

      Intermediate · Professional Certificate · 3-6 Months

    • Placeholder
      Placeholder
      Coursera Project Network

      Create a Custom Marketing Analytics Dashboard in Data Studio

      習得できるスキル: Business Analysis, Data Analysis, Data Analysis Software, Data Visualization, Data Visualization Software, Marketing

      4.4

      (79件のレビュー)

      Intermediate · Guided Project · Less Than 2 Hours

    • Placeholder
      Placeholder
      Johns Hopkins University

      Data Science: Foundations using R

      習得できるスキル: R Programming, Data Analysis, Data Science, Exploratory Data Analysis, Statistical Programming, Data Visualization Software, Software Visualization, Statistical Visualization, Basic Descriptive Statistics, General Statistics, Big Data, Computer Programming, Computer Programming Tools, Data Structures, Experiment, Linear Algebra, Machine Learning Software, Probability & Statistics, Probability Distribution, Software Engineering Tools, Spreadsheet Software, Statistical Tests, Application Development, Business Analysis, Data Management, Data Visualization, Extract, Transform, Load, Knitr, Plot (Graphics)

      4.6

      (47.2k件のレビュー)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      University of Illinois at Urbana-Champaign

      Accounting Data Analytics with Python

      習得できるスキル: Python Programming, Statistical Programming, Computer Programming, Data Structures, Data Visualization, Databases, Plot (Graphics), Probability & Statistics, Regression, SQL, Theoretical Computer Science, Database Administration, Statistical Visualization, Accounting, Data Analysis, Data Management, Microsoft Excel, Operating Systems, Systems Design

      4.2

      (73件のレビュー)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      University of Minnesota

      Introduction to Recommender Systems: Non-Personalized and Content-Based

      習得できるスキル: Basic Descriptive Statistics, Data Analysis, Probability & Statistics, Machine Learning, Applied Machine Learning, Natural Language Processing, Statistical Analysis, Statistical Programming, Correlation And Dependence, Java Programming, Machine Learning Algorithms, Statistical Machine Learning, Business Analysis, Computer Programming, Data Analysis Software, Digital Marketing, General Statistics, Human Computer Interaction, Marketing, Mobile Development, Spreadsheet Software

      4.5

      (626件のレビュー)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      CFA Institute

      Statistics for Machine Learning for Investment Professionals

      習得できるスキル: Probability & Statistics, General Statistics, Machine Learning, Data Analysis, Regression, Business Analysis, Computer Programming, Correlation And Dependence, Econometrics, Forecasting, Machine Learning Algorithms, Probability Distribution, Python Programming, Statistical Analysis, Statistical Programming, Statistical Tests, Data Science

      4.7

      (25件のレビュー)

      Beginner · Course · 1-3 Months

    advanced statisticsに関連する検索

    advanced statistics for data science
    advanced linear models for data science 2: statistical linear models
    1234…37

    要約して、advanced statistics の人気コース10選をご紹介します。

    • Advanced Statistics for Data Science: Johns Hopkins University
    • Materials Data Sciences and Informatics: Georgia Institute of Technology
    • Data Processing Using Python: Nanjing University
    • Business Analytics for Decision Making: University of Colorado Boulder
    • Analyze Survey Data with Tableau: Coursera Project Network
    • Excel Skills for Business: Macquarie University
    • SAS Advanced Programmer: SAS
    • Create a Custom Marketing Analytics Dashboard in Data Studio: Coursera Project Network
    • Data Science: Foundations using R: Johns Hopkins University
    • Accounting Data Analytics with Python: University of Illinois at Urbana-Champaign

    上級統計学に関するよくある質問

    • Advanced statistics are the mathematical tools used to discover and explore complex relationships between different variables in large datasets. In contrast to basic statistics such as average and analysis of variance (ANOVA) that simply describe the characteristics of a dataset, advanced statistical approaches often seek to make predictions about the world. This requires the use of more sophisticated statistical inference tools, such as generalized linear models for regression analysis capable of establishing how multiple interrelated factors may impact projected outcomes.

      These advanced statistical methods are increasingly important in the field of data science, which is tasked with uncovering important business insights and developing predictive models from diverse big data-scale datasets. These techniques are also especially important for the proper training and use of machine learning algorithms. As in data science and machine learning more generally, R programming and Python programming skills are typically relied upon to conduct these advanced statistical analyses.‎

    • Advanced statistics skills are essential for work in data science, machine learning, and artificial intelligence (AI), as statistical approaches are at the heart of the learning algorithms that make these applications possible. An understanding of statistics is likewise important for professionals in finance, healthcare, and other industries that are increasingly making use of machine learning and AI, as they increasingly need to work closely with data scientists to ensure that these powerful techniques are developed to solve the right business problems.

      Those wishing to delve deeper into advanced statistical methods and help develop new mathematical approaches in the field may pursue a master’s or even a PhD in statistics. These experts work in academia, government, or at private sector companies involved in scientific or engineering research. According to the Bureau of Labor Statistics, professional statisticians earn a median annual salary of $91,160, and this specialized career path is expected to be in high demand due to expanding opportunities to use statistics to navigate our data-rich world.‎

    • Certainly. Coursera offers a variety of courses in advanced statistics as well as their applications in the context of fields like data science and machine learning. In fact, coursework in statistics is often a prerequisite for data science classes. Regardless of your level of expertise and needs in these areas, Coursera enables you to learn remotely from top-ranked schools like the University of Michigan, Johns Hopkins University, and Duke University. And, since you can view course materials and complete coursework on a flexible schedule, there’s an exceedingly high probability that you can fit online learning about advanced statistics into your existing school or work life.‎

    • You need to have strong math skills, especially in basic calculus, linear algebra, and statistics before starting to learn advanced statistics. It's important that you have strong technical skills and are very comfortable on the computer, strong analytical skills, and the ability to carefully examine and question data that is presented to you so that you can organize and draw conclusions from it. For learning some concepts in advanced statistics, you'll need to have experience using the R statistical software package and understand Bayesian estimation, principles of maximum-likelihood estimation, and calculus-based probability.‎

    • People who enjoy mathematics are best suited for roles in advanced statistics, especially those who enjoy concepts like probability, linear models, and statistics and how they relate to data science. They can quickly grasp and apply complex technical concepts as well. Those who enjoy testing hypotheses and figuring out uncertain outcomes based on probability are also well suited for roles in advanced statistics. Also, people who have wide-ranging computer skills, the ability to communicate their statistical findings in plain language, problem-solving and analytical skills, and teamwork and collaborative skills are best suited for roles involving advanced statistics.‎

    • If you're aspiring to be a biostatistician or data scientist, learning advanced statistics is probably right for you. If you're interested in machine learning and the development of data products, you may also find learning advanced statistics is right for you. People who want to have a career as a statistician, statistical epidemiologist, sports analyst, actuary, market researcher, or investment analyst may also find learning advanced statistics to be the right choice. And if you need to understand how to transform complex sets of data into practical applications, learning advanced statistics is right for you.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Google デジタルマーケティング& E-コマースプロフェッショナル認定証
    • python プロフェッショナル認定証を有するGoogle ITオートメーション
    • Google ITサポート
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータアナリスト
    • IBMデータエンジニアリング
    • IBMデータサイエンス
    • IBMフルスタック・クラウドデベロッパー
    • IBM機械学習
    • インテュイット簿記
    • メタフロントエンド開発者
    • 深い学習。AI テンソルフロー開発プロフェッショナル認定証
    • SASプロフェッショナル認定証
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ
    • Python 構文のエラーを特定する方法
    • Pythonの例外をキャッチする方法
    • すべてのプログラミングチュートリアルを見る

    人気コースと認定

    • 無料コース
    • 人工知能コース
    • ブロックチェーンコース
    • コンピュータサイエンスコース
    • Cursos Gratis
    • サイバーセキュリティコース
    • データ分析コース
    • データサイエンスコース
    • 英語会話コース
    • フルスタックウェブ開発コース
    • Google コース
    • ヒューマンリソースコース
    • ITコース
    • 英語学習コース
    • マイクロソフトエクセルコース
    • 製品マネジメントコース
    • プロジェクトマネジメントコース
    • Pythonコース
    • SQL コース
    • 俊敏認定
    • CAPM認証
    • CompTIA A +認定
    • データ分析認定
    • スクラムマスター認定
    • すべてのコースを見る

    人気コレクションと記事

    • 1日で終了できる無料オンラインコース
    • 人気の無料コース
    • ビジネス仕事
    • サイバーセキュリティ仕事
    • IT仕事のエントリーレベル
    • データ分析者の面接質問
    • データ分析プロジェクト
    • データアナリストになる方法
    • プロジェクトマネージャーになる方法
    • ITスキル
    • プロジェクトマネージャーの面接質問
    • Pythonプログラミングスキル
    • 面接での強みと弱み
    • データアナリストは何をしますか
    • ソフトウェアエンジニアは何をしますか
    • データエンジニアとは
    • データサイエンティストとは
    • プロダクトデザイナーとは
    • スクラムマスターとは
    • UX検索とは
    • PMP認定を取得する方法
    • PMI認証
    • 人気のサイバーセキュリティ証明書
    • 人気の QL 証明書
    • courseraのすべての記事を読む

    オンラインで学位または証明書を取得する

    • Google プロフェッショナル認定プログラム
    • プロフェッショナル認定
    • すべての証明書を表示する
    • 学士号
    • 修士号
    • コンピュータサイエンスの学位
    • データサイエンスの学位
    • MBAとビジネス学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • 学士号と理学博士号の比較
    • 学士号とは何ですか?
    • 開発する11の良い学習習慣
    • 推薦状の書き方
    • ビジネスの学位で就ける需要の高い10の仕事
    • コンピュータサイエンスの修士課程は価値があるのか?
    • すべての学位プログラムを見る
    • Coursera India
    • Coursera UK
    • Coursera Mexico

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    Placeholder
    Placeholder
    Placeholder
    ©2023 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder