Coursera
  • オンライン学位学士号と修士号の詳細を見る
  • MasterTrack™修士号取得に向けて単位を取得
  • 大学証明書大学院レベルの学習でキャリアアップを目指す
キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Applied Statistics

    フィルター

    「applied statistics」の1046件の結果

    • Placeholder
      Indian Statistical Institute

      Postgraduate Diploma in Applied Statistics

      習得できるスキル: Basic Descriptive Statistics, Bayesian Statistics, Correlation And Dependence, Data Analysis, General Statistics, Probability & Statistics

      Postgraduate Diploma · 6-12 Months

    • Placeholder
      IBM Skills Network

      IBM Data Science

      習得できるスキル: Python Programming, Data Science, Data Analysis, Data Structures, Statistical Programming, Machine Learning, Data Mining, Regression, Machine Learning Algorithms, Data Visualization, General Statistics, Basic Descriptive Statistics, SQL, Applied Machine Learning, Statistical Analysis, Computer Programming Tools, Data Analysis Software, Machine Learning Software, Software Visualization, Databases, Programming Principles, Exploratory Data Analysis, Computer Programming, Statistical Visualization, Algebra, Data Management, Database Theory, Data Visualization Software, R Programming, Statistical Machine Learning, Statistical Tests, Deep Learning, Probability & Statistics, Database Application, Extract, Transform, Load, Plot (Graphics), Devops Tools, SPSS, Estimation, Interactive Data Visualization, Algorithms, Database Administration, Geovisualization, Reinforcement Learning, Theoretical Computer Science, Big Data, Business Analysis, Computational Logic, Correlation And Dependence, Econometrics, Entrepreneurship, Marketing, Mathematical Theory & Analysis, Mathematics, Spreadsheet Software, Storytelling, Supply Chain Systems, Supply Chain and Logistics, Writing

      4.6

      (106.1k件のレビュー)

      Beginner · Professional Certificate · 3-6 Months

    • Placeholder
      IBM Skills Network

      IBM Data Analyst

      習得できるスキル: Data Analysis, Python Programming, Data Visualization, Exploratory Data Analysis, Basic Descriptive Statistics, Data Structures, Statistical Programming, Data Science, Statistical Visualization, Plot (Graphics), Data Management, General Statistics, SQL, Databases, Business Analysis, Microsoft Excel, Spreadsheet Software, Data Mining, Statistical Analysis, Programming Principles, Probability & Statistics, Regression, Machine Learning, Algebra, Computer Programming, Data Analysis Software, Database Theory, Probability Distribution, Applied Machine Learning, Statistical Tests, Big Data, Correlation And Dependence, Data Visualization Software, Database Application, Estimation, NoSQL, Geovisualization, ArcGIS, Cloud Computing, Data Warehousing, Database Administration, Extract, Transform, Load, HTML and CSS, Knitr, Mathematics, Minitab, PostgreSQL, R Programming, SAS (Software), SPSS, Apache, Computational Logic, Computer Programming Tools, Econometrics, Leadership and Management, Mathematical Theory & Analysis, Operating Systems, Professional Development, Statistical Machine Learning, System Programming, Theoretical Computer Science

      4.6

      (60.7k件のレビュー)

      Beginner · Professional Certificate · 3-6 Months

    • Placeholder
      Placeholder
      DeepLearning.AI、Stanford University

      Machine Learning

      習得できるスキル: Machine Learning, Probability & Statistics, Machine Learning Algorithms, General Statistics, Theoretical Computer Science, Algorithms, Applied Machine Learning, Artificial Neural Networks, Regression, Econometrics, Computer Programming, Deep Learning, Python Programming, Statistical Programming, Mathematics, Tensorflow, Data Management, Data Structures, Statistical Machine Learning, Reinforcement Learning, Probability Distribution, Mathematical Theory & Analysis, Data Analysis, Data Mining, Linear Algebra, Computer Vision, Calculus, Feature Engineering, Bayesian Statistics, Operations Research, Research and Design, Strategy and Operations, Computational Logic, Accounting, Communication

      4.9

      (7.9k件のレビュー)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      IBM Skills Network

      Introduction to Data Science

      習得できるスキル: Data Science, Data Structures, SQL, Computer Programming Tools, Data Analysis Software, Machine Learning Software, Software Visualization, Statistical Programming, Databases, Python Programming, Database Theory, Data Visualization Software, R Programming, Data Management, Data Mining, Database Application, Regression, Devops Tools, Machine Learning Algorithms, SPSS, Basic Descriptive Statistics, Data Analysis, Database Administration, Big Data, Computer Programming, Deep Learning, General Statistics, Machine Learning, Marketing, Probability & Statistics, Storytelling, Writing

      4.6

      (77.1k件のレビュー)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      IBM Skills Network

      Key Technologies for Business

      習得できるスキル: Data Science, Cloud Computing, Applied Machine Learning, Cloud Engineering, Cloud Infrastructure, Data Mining, Regression, Cloud Applications, Cloud Management, Cloud Platforms, Cloud Storage, DevOps, IBM Cloud, Network Security, Software As A Service, Software Engineering, Basic Descriptive Statistics, Data Analysis, Big Data, BlockChain, Computer Architecture, Computer Graphics, Computer Programming, Computer Vision, Deep Learning, Finance, General Statistics, Human Computer Interaction, Interactive Design, Machine Learning, Machine Learning Algorithms, Operating Systems, Probability & Statistics, Security Engineering, Software Architecture, Software Framework, Storytelling, System Programming, Theoretical Computer Science, Writing

      4.7

      (73.5k件のレビュー)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      IBM Data Engineering

      習得できるスキル: Data Management, Databases, Data Architecture, Data Structures, Big Data, Database Theory, SQL, Database Administration, Apache, Extract, Transform, Load, Python Programming, Database Application, Data Model, Data Warehousing, Data Analysis, NoSQL, Data Engineering, Distributed Computing Architecture, Database Design, Operating Systems, System Programming, System Software, Programming Principles, Statistical Programming, Computer Architecture, Algebra, PostgreSQL, Applied Machine Learning, Correlation And Dependence, Feature Engineering, General Statistics, Graph Theory, Machine Learning, Machine Learning Algorithms, Machine Learning Software, Regression, Statistical Analysis, Statistical Machine Learning, Data Visualization, Data Visualization Software, Basic Descriptive Statistics, Exploratory Data Analysis, Cloud Applications, Cloud Computing, Data Science, DevOps, Kubernetes, Leadership and Management, Network Architecture, Network Security, Other Programming Languages, Professional Development, Security Engineering, Accounting, Algorithms, Business Analysis, Cloud Engineering, Computational Logic, Computational Thinking, Computer Networking, Computer Programming, Computer Programming Tools, Hardware Design, IBM Cloud, Interactive Data Visualization, Linux, Mathematical Theory & Analysis, Mathematics, Microarchitecture, Project Management, Security Strategy, Software Architecture, Software Engineering, Strategy and Operations, Theoretical Computer Science

      4.6

      (40.4k件のレビュー)

      Beginner · Professional Certificate · 3-6 Months

    • Placeholder
      Placeholder
      DeepLearning.AI

      Deep Learning

      習得できるスキル: Deep Learning, Machine Learning, Artificial Neural Networks, Python Programming, Statistical Programming, Machine Learning Algorithms, Linear Algebra, Applied Machine Learning, Statistical Machine Learning, Dimensionality Reduction, Feature Engineering, Probability & Statistics, Business Psychology, Entrepreneurship, Machine Learning Software, Computer Vision, Marketing, General Statistics, Natural Language Processing, Computer Programming, Leadership and Management, Project Management, Regression, Sales, Strategy, Strategy and Operations, Tensorflow, Differential Equations, Mathematics, Applied Mathematics, Decision Making, Supply Chain Systems, Supply Chain and Logistics, Advertising, Communication, Estimation, Forecasting, Mathematical Theory & Analysis, Statistical Visualization, Algorithms, Theoretical Computer Science, Bayesian Statistics, Calculus, Probability Distribution, Statistical Tests, Big Data, Computer Architecture, Computer Networking, Data Management, Human Computer Interaction, Network Architecture, User Experience, Algebra, Computational Logic, Computer Graphic Techniques, Computer Graphics, Data Structures, Data Visualization, Hardware Design, Interactive Design, Markov Model, Network Model

      4.8

      (137.8k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      IBM AI Foundations for Business

      習得できるスキル: Data Science, Applied Machine Learning, Data Management, Leadership and Management, Data Architecture, Data Mining, Machine Learning, Regression, Artificial Neural Networks, Basic Descriptive Statistics, Cloud Computing, Cloud Platforms, Data Analysis, Database Administration, Databases, Deep Learning, Big Data, Computer Vision, General Statistics, Innovation, Machine Learning Algorithms, Probability & Statistics, Storytelling, Writing

      4.7

      (70.7k件のレビュー)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      Applied Data Science

      習得できるスキル: Python Programming, Data Analysis, Data Science, Statistical Programming, Data Structures, Data Visualization, Basic Descriptive Statistics, Programming Principles, Exploratory Data Analysis, Computer Programming, Statistical Visualization, Algebra, Machine Learning, Applied Machine Learning, Data Mining, General Statistics, Regression, Statistical Analysis, Statistical Tests, Data Management, Extract, Transform, Load, Plot (Graphics), Interactive Data Visualization, Machine Learning Algorithms, SQL, Geovisualization, Algorithms, Business Analysis, Computational Logic, Computer Programming Tools, Correlation And Dependence, Data Analysis Software, Databases, Econometrics, Mathematical Theory & Analysis, Mathematics, Probability & Statistics, Spreadsheet Software, Statistical Machine Learning, Theoretical Computer Science

      4.6

      (43.2k件のレビュー)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      IBM Data Analytics with Excel and R

      習得できるスキル: Data Analysis, R Programming, Data Visualization, Plot (Graphics), Data Management, SQL, Exploratory Data Analysis, Data Mining, Databases, Basic Descriptive Statistics, General Statistics, Data Visualization Software, Statistical Programming, Data Analysis Software, Interactive Data Visualization, Statistical Visualization, Statistical Analysis, Big Data, Microsoft Excel, Probability & Statistics, Business Analysis, Spreadsheet Software, Database Theory, Regression, Statistical Tests, Data Science, Data Structures, Software Visualization, Machine Learning, User Experience, Probability Distribution, NoSQL, Python Programming, Applied Machine Learning, Deep Learning, Estimation, Geovisualization, Linear Algebra, Machine Learning Algorithms, Machine Learning Software, SAS (Software), Spatial Data Analysis, Statistical Machine Learning, Cloud Computing, Data Architecture, Data Model, Data Warehousing, Database Administration, Database Application, Database Design, Mathematics, Visualization (Computer Graphics), Advertising, Apache, Communication, Computational Logic, Computer Programming, Extract, Transform, Load, Leadership and Management, Marketing, Operating Systems, Professional Development, Programming Principles, System Programming, Theoretical Computer Science

      4.7

      (14.7k件のレビュー)

      Beginner · Professional Certificate · 3-6 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      IBM & Darden Digital Strategy

      習得できるスキル: Entrepreneurship, Strategy and Operations, Business Analysis, Business Transformation, Leadership and Management, Marketing, Sales, Strategy, Data Science, Research and Design, Cloud Computing, Data Analysis, Data Management, Applied Machine Learning, Business Design, Innovation, Big Data, Market Analysis, Cloud Engineering, Cloud Infrastructure, Databases, NoSQL, Python Programming, SQL, Statistical Programming, Basic Descriptive Statistics, Cloud Applications, Cloud Management, Cloud Platforms, Cloud Storage, Data Mining, Data Structures, Data Visualization, Data Warehousing, DevOps, General Statistics, IBM Cloud, Machine Learning, Mathematics, Network Security, Probability & Statistics, Software As A Service, Software Engineering, Apache, BlockChain, Business Psychology, Change Management, Computer Architecture, Computer Graphics, Computer Networking, Computer Programming, Computer Vision, Data Visualization Software, Deep Learning, Design and Product, Digital Marketing, Extract, Transform, Load, Finance, Human Computer Interaction, Interactive Design, Internet Of Things, Machine Learning Algorithms, Microsoft Excel, Operating Systems, Organizational Development, Product Strategy, Professional Development, Security Engineering, Software Architecture, Software Framework, System Programming, Theoretical Computer Science

      4.7

      (23.5k件のレビュー)

      Beginner · Specialization · 3-6 Months

    1234…84

    要約して、applied statistics の人気コース10選をご紹介します。

    • Postgraduate Diploma in Applied Statistics: Indian Statistical Institute
    • IBM Data Science: IBM Skills Network
    • IBM Data Analyst: IBM Skills Network
    • Machine Learning: DeepLearning.AI
    • Introduction to Data Science: IBM Skills Network
    • Key Technologies for Business: IBM Skills Network
    • IBM Data Engineering: IBM Skills Network
    • Deep Learning: DeepLearning.AI
    • IBM AI Foundations for Business: IBM Skills Network
    • Applied Data Science: IBM Skills Network

    応用統計学に関するよくある質問

    • Applied statistics is the use of statistical techniques to solve real-world data analysis problems. In contrast to the pure study of mathematical statistics, applied statistics is typically used by and for non-mathematicians in fields ranging from social science to business. Indeed, in the big data era, applied statistics has become important for deriving insights and guiding decision-making in virtually every industry.

      The increased reliance on data and statistics to help understand our world has made the careful application of these techniques even more essential; too often, statistics can be used erroneously or even misleadingly when methods of analysis are not properly connected to research questions. Thus, a major aspect of applied statistics is the accurate communication of findings for a non-technical audience, including specifics about data sources, relevance to the problem at hand, and degrees of uncertainty.

      That said, the statistical approaches used in this field are the same as in the study of mathematical statistics. Rigorous use of statistical hypothesis testing, statistical inference, linear regression techniques, and analysis of variance (ANOVA) are core to the work of applied statistics. And, as in other areas of data science, Python programming and R programming are often used to analyze large datasets when Microsoft Excel is not sufficiently powerful.‎

    • Demand for data-driven insights is growing fast across all fields, making a background in applied statistics the gateway to a wide variety of careers. Financial institutions and companies of all kinds rely on business analytics to guide investments and operations; political candidates and advocacy groups need to conduct surveys and understand public polling data to understand popular opinion on today’s issues; and even sports teams are increasingly hiring experts in applied statistics to make decisions regarding personnel as well as in-game strategy.

      While many jobs in applied statistics may require only a bachelor’s degree in fields such as mathematics or computer science, high-level roles often expect a master’s degree in statistics. According to the Bureau of Labor Statistics, professional statisticians earn a median annual salary of $91,160 as of May 2019, and these jobs are expected to grow much faster than average due to the need to analyze fast-growing volumes of electronic data.‎

    • Yes, with absolute certainty. Coursera offers courses and Specializations in applied statistics for business, social science, and other areas, as well as related topics such as data science and Python programming. These courses are offered by top-ranked universities and leading companies from around the world, including the University of Michigan, the University of Amsterdam, and the University of Virginia, and IBM. Regardless of whether you’re a student looking to learn more about this exciting field or a mid-career professional upgrading their skill set, the combination of a high-quality education and the flexibility of learning online makes Coursera a great choice.‎

    • It's very helpful to have strong math skills, analytical skills, and experience solving problems before starting to learn applied statistics. It's also good to have experience and a good comfort level with technology and computers. Previous experience in statistics is also helpful, although not required. You may also benefit from having prior experience using Excel spreadsheets as you begin to learn applied statistics.‎

    • People best suited for roles in applied statistics are analytical thinkers. They enjoy problem-solving by taking available data and analyzing it to arrive at solutions. They also have effective communication skills so that information can flow clearly to all stakeholders within an organization. Organization and multitasking come easily to people best suited for roles in applied statistics because these individuals need to deal with large amounts of information and manage their time and resources efficiently. People well suited for these roles also pay close attention to detail to make sure the outcomes they're tasked with delivering meet or exceed expectations.‎

    • While the use of applied statistics can be found in almost every industry, learning applied statistics may be especially interesting to you if you're seeking a career in the insurance, web analytics, or energy sectors. These are some of the top industries that currently utilize applied statistics. However, a person in any position in which data is gathered and analyzed to create solutions, innovations, or improvements would benefit from learning applied statistics, from coaches and hospital administrators to bloggers, data scientists, and bankers. If you would like to know how to ensure you're collecting the right data, how to analyze data correctly, and how to effectively report your findings so they can be applied in real-world situations, learning applied statistics may be right for you.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Google デジタルマーケティング& E-コマースプロフェッショナル認定証
    • python プロフェッショナル認定証を有するGoogle ITオートメーション
    • Google ITサポート
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータアナリスト
    • IBMデータエンジニアリング
    • IBMデータサイエンス
    • IBMフルスタック・クラウドデベロッパー
    • IBM機械学習
    • インテュイット簿記
    • メタフロントエンド開発者
    • 深い学習。AI テンソルフロー開発プロフェッショナル認定証
    • SASプロフェッショナル認定証
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ
    • Python 構文のエラーを特定する方法
    • Pythonの例外をキャッチする方法
    • すべてのプログラミングチュートリアルを見る

    人気コースと認定

    • 無料コース
    • 人工知能コース
    • ブロックチェーンコース
    • コンピュータサイエンスコース
    • Cursos Gratis
    • サイバーセキュリティコース
    • データ分析コース
    • データサイエンスコース
    • 英語会話コース
    • フルスタックウェブ開発コース
    • Google コース
    • ヒューマンリソースコース
    • ITコース
    • 英語学習コース
    • マイクロソフトエクセルコース
    • 製品マネジメントコース
    • プロジェクトマネジメントコース
    • Pythonコース
    • SQL コース
    • 俊敏認定
    • CAPM認証
    • CompTIA A +認定
    • データ分析認定
    • スクラムマスター認定
    • すべてのコースを見る

    人気コレクションと記事

    • 1日で終了できる無料オンラインコース
    • 人気の無料コース
    • ビジネス仕事
    • サイバーセキュリティ仕事
    • IT仕事のエントリーレベル
    • データ分析者の面接質問
    • データ分析プロジェクト
    • データアナリストになる方法
    • プロジェクトマネージャーになる方法
    • ITスキル
    • プロジェクトマネージャーの面接質問
    • Pythonプログラミングスキル
    • 面接での強みと弱み
    • データアナリストは何をしますか
    • ソフトウェアエンジニアは何をしますか
    • データエンジニアとは
    • データサイエンティストとは
    • プロダクトデザイナーとは
    • スクラムマスターとは
    • UX検索とは
    • PMP認定を取得する方法
    • PMI認証
    • 人気のサイバーセキュリティ証明書
    • 人気の QL 証明書
    • courseraのすべての記事を読む

    オンラインで学位または証明書を取得する

    • Google プロフェッショナル認定プログラム
    • プロフェッショナル認定
    • すべての証明書を表示する
    • 学士号
    • 修士号
    • コンピュータサイエンスの学位
    • データサイエンスの学位
    • MBAとビジネス学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • 学士号と理学博士号の比較
    • 学士号とは何ですか?
    • 開発する11の良い学習習慣
    • 推薦状の書き方
    • ビジネスの学位で就ける需要の高い10の仕事
    • コンピュータサイエンスの修士課程は価値があるのか?
    • すべての学位プログラムを見る
    • Coursera India
    • Coursera UK
    • Coursera Mexico

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    Placeholder
    Placeholder
    Placeholder
    ©2023 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder