Coursera
  • オンライン学位学士号と修士号の詳細を見る
  • MasterTrack™修士号取得に向けて単位を取得
  • 大学証明書大学院レベルの学習でキャリアアップを目指す
キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Deep Learning

    フィルター

    「deep learning」の690件の結果

    • Placeholder
      DeepLearning.AI

      Deep Learning

      習得できるスキル: Deep Learning, Machine Learning, Artificial Neural Networks, Python Programming, Statistical Programming, Machine Learning Algorithms, Linear Algebra, Applied Machine Learning, Statistical Machine Learning, Dimensionality Reduction, Feature Engineering, Probability & Statistics, Business Psychology, Entrepreneurship, Machine Learning Software, Computer Vision, Marketing, General Statistics, Natural Language Processing, Computer Programming, Leadership and Management, Project Management, Regression, Sales, Strategy, Strategy and Operations, Tensorflow, Differential Equations, Mathematics, Applied Mathematics, Decision Making, Supply Chain Systems, Supply Chain and Logistics, Advertising, Communication, Estimation, Forecasting, Mathematical Theory & Analysis, Statistical Visualization, Algorithms, Theoretical Computer Science, Bayesian Statistics, Calculus, Probability Distribution, Statistical Tests, Big Data, Computer Architecture, Computer Networking, Data Management, Human Computer Interaction, Network Architecture, User Experience, Algebra, Computational Logic, Computer Graphic Techniques, Computer Graphics, Data Structures, Data Visualization, Hardware Design, Interactive Design, Markov Model, Network Model

      4.8

      (137.8k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      DeepLearning.AI、Stanford University

      Machine Learning

      習得できるスキル: Machine Learning, Probability & Statistics, Machine Learning Algorithms, General Statistics, Theoretical Computer Science, Algorithms, Applied Machine Learning, Artificial Neural Networks, Regression, Econometrics, Computer Programming, Deep Learning, Python Programming, Statistical Programming, Mathematics, Tensorflow, Data Management, Data Structures, Statistical Machine Learning, Reinforcement Learning, Probability Distribution, Mathematical Theory & Analysis, Data Analysis, Data Mining, Linear Algebra, Computer Vision, Calculus, Feature Engineering, Bayesian Statistics, Operations Research, Research and Design, Strategy and Operations, Computational Logic, Accounting, Communication

      4.9

      (8k件のレビュー)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      DeepLearning.AI

      Neural Networks and Deep Learning

      習得できるスキル: Artificial Neural Networks, Deep Learning, Machine Learning, Machine Learning Algorithms, Python Programming, Linear Algebra, Regression, General Statistics, Probability & Statistics, Business Psychology, Computer Programming, Dimensionality Reduction, Entrepreneurship, Feature Engineering, Statistical Programming, Supply Chain Systems, Supply Chain and Logistics, Applied Machine Learning, Mathematics, Statistical Machine Learning, Machine Learning Software, Bayesian Statistics, Statistical Tests, Algebra, Algorithms, Computational Logic, Computer Architecture, Computer Networking, Data Structures, Estimation, Hardware Design, Markov Model, Mathematical Theory & Analysis, Network Model, Theoretical Computer Science

      4.9

      (117.4k件のレビュー)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      DeepLearning.AI

      Mathematics for Machine Learning and Data Science

      習得できるスキル: Linear Algebra, Mathematics, Mathematical Theory & Analysis, Algebra, Algorithms, Artificial Neural Networks, Computer Programming, Deep Learning, Machine Learning, Python Programming, Statistical Programming, Theoretical Computer Science, Calculus, Statistical Analysis

      4.4

      (30件のレビュー)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI TensorFlow Developer

      習得できるスキル: Machine Learning, Deep Learning, Tensorflow, Artificial Neural Networks, Data Science, Computer Vision, Computer Programming, Python Programming, Statistical Programming, General Statistics, Natural Language Processing, Probability & Statistics, Business Psychology, Entrepreneurship, Forecasting, Machine Learning Algorithms, Communication, Marketing, Applied Machine Learning, Programming Principles, Statistical Machine Learning, Computer Graphic Techniques, Computer Graphics, Machine Learning Software

      4.7

      (23.1k件のレビュー)

      Intermediate · Professional Certificate · 3-6 Months

    • Placeholder
      DeepLearning.AI

      Natural Language Processing

      習得できるスキル: Machine Learning, Natural Language Processing, Statistical Programming, Python Programming, Artificial Neural Networks, Deep Learning, Machine Learning Algorithms, Data Science, Statistical Machine Learning, Probability & Statistics, Algorithms, Bayesian Statistics, Communication, Computer Graphics, Computer Programming, Dimensionality Reduction, Experiment, General Statistics, Human Computer Interaction, Machine Learning Software, Markov Model, Mathematics, Operations Research, Regression, Research and Design, Strategy and Operations, Theoretical Computer Science, User Experience

      4.6

      (4.9k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      Imperial College London

      TensorFlow 2 for Deep Learning

      習得できるスキル: Machine Learning, Deep Learning, Tensorflow, Computer Programming, Python Programming, Statistical Programming, Applied Machine Learning, Artificial Neural Networks, Computer Vision, Machine Learning Algorithms, Probability & Statistics, Data Visualization, Bayesian Statistics, Natural Language Processing, Probability Distribution, Advertising, Communication, Marketing, Operations Research, Research and Design

      4.8

      (628件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      IBM AI Engineering

      習得できるスキル: Machine Learning, Computer Programming, Python Programming, Computer Vision, Deep Learning, Statistical Programming, Artificial Neural Networks, Machine Learning Algorithms, Probability & Statistics, General Statistics, Regression, Applied Machine Learning, Apache, Data Management, Data Mining, Data Analysis, Statistical Analysis, Big Data, Algorithms, Theoretical Computer Science, Statistical Machine Learning, Computer Graphics, Dimensionality Reduction, Tensorflow, Computer Graphic Techniques, Basic Descriptive Statistics, Business Analysis, Correlation And Dependence, Databases, Mathematics, NoSQL, SQL, Estimation, Econometrics, Entrepreneurship, Machine Learning Software, Probability Distribution, Data Science, Data Structures, IBM Cloud, Supply Chain Systems, Supply Chain and Logistics

      4.6

      (15.8k件のレビュー)

      Intermediate · Professional Certificate · 3-6 Months

    • Placeholder
      Placeholder
      Imperial College London

      Mathematics for Machine Learning

      習得できるスキル: Mathematics, Algebra, Linear Algebra, Machine Learning, Python Programming, Probability & Statistics, General Statistics, Calculus, Computer Programming, Applied Mathematics, Mathematical Theory & Analysis, Statistical Programming, Algorithms, Dimensionality Reduction, Regression, Theoretical Computer Science, Basic Descriptive Statistics, Data Analysis, Probability Distribution, Artificial Neural Networks, Computer Graphic Techniques, Computer Graphics, Computer Networking, Deep Learning, Differential Equations, Experiment, Machine Learning Algorithms, Network Model

      4.6

      (13.4k件のレビュー)

      Beginner · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      DeepLearning.AI

      Machine Learning Engineering for Production (MLOps)

      習得できるスキル: Machine Learning, Applied Machine Learning, DevOps, Python Programming, Statistical Programming, Tensorflow, Exploratory Data Analysis, Feature Engineering, Probability & Statistics, Cloud Computing, Data Management, Data Warehousing, Extract, Transform, Load, Computer Programming, Computer Vision, Deep Learning, Business Analysis, Change Management, Computer Networking, Data Analysis, Data Visualization, Estimation, General Statistics, Leadership and Management, Machine Learning Algorithms, Network Security, Security Engineering, Security Strategy, Statistical Visualization, Strategy and Operations

      4.7

      (2.7k件のレビュー)

      Advanced · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      DeepLearning.AI

      Generative Adversarial Networks (GANs)

      習得できるスキル: Machine Learning, Artificial Neural Networks, Deep Learning, Machine Learning Algorithms, Statistical Programming, Python Programming, Machine Learning Software, Computer Vision, Computer Programming, Probability & Statistics, Applied Machine Learning

      4.7

      (1.9k件のレビュー)

      Intermediate · Specialization · 1-3 Months

    • Placeholder
      Placeholder
      University of Alberta

      Reinforcement Learning

      習得できるスキル: Machine Learning, Reinforcement Learning, Artificial Neural Networks, Entrepreneurship, Mathematics, Machine Learning Algorithms, Python Programming, Statistical Programming, Business Psychology, Computer Programming, Markov Model, Theoretical Computer Science, Algorithms, Deep Learning, Leadership and Management, Planning, Software Architecture, Software Engineering, Supply Chain and Logistics, Operations Research, Research and Design, Strategy and Operations

      4.7

      (3.1k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    deep learningに関連する検索

    deep learning specialization
    deep learning andrew ng
    deep learning with pytorch : image segmentation
    deep learning for healthcare
    deep learning with pytorch : siamese network
    deep learning for business
    deep learning with pytorch : object localization
    deep learning with pytorch : generative adversarial network
    1234…58

    要約して、deep learning の人気コース10選をご紹介します。

    • Deep Learning: DeepLearning.AI
    • Machine Learning: DeepLearning.AI
    • Neural Networks and Deep Learning: DeepLearning.AI
    • Mathematics for Machine Learning and Data Science: DeepLearning.AI
    • DeepLearning.AI TensorFlow Developer: DeepLearning.AI
    • Natural Language Processing: DeepLearning.AI
    • TensorFlow 2 for Deep Learning: Imperial College London
    • IBM AI Engineering: IBM Skills Network
    • Mathematics for Machine Learning: Imperial College London
    • Machine Learning Engineering for Production (MLOps): DeepLearning.AI

    Machine Learningで学べるスキル

    Pythonプログラミング (33)
    TensorFlow (32)
    人工ニューラルネットワーク (24)
    ビッグデータ (18)
    統計的分類 (17)
    強化学習 (13)
    代数 (10)
    ベイズ (10)
    線型代数学 (10)
    線形回帰 (9)
    NumPy (9)

    ディープラーニングに関するよくある質問

    • Deep learning is a powerful application of machine learning (ML) algorithms modeled after biological systems of information processing called artificial neural networks (ANN). Machine learning is an artificial intelligence (AI) technique that allows computers to automatically learn from data without explicit programming, and deep learning harnesses multiple layers of interconnected neural networks to generate more sophisticated insights.

      While this field of computer science is quite new, it is already being used in a growing range of important applications. Deep learning excels at automated image recognition, also known as computer vision, which is used for creating accurate facial recognition systems and safely driving autonomous vehicles. This approach is also used for speech recognition and natural language processing (NLP) applications, which allow for computers to interact with human users via voice commands.

      Machine learning algorithms such as logistic regression are key to creating deep learning applications, along with commonly used programming languages such as Tensorflow and Python. These programming languages are generally preferred for teaching and learning in this field due to their flexibility and relative accessibility - an important priority given the relevance of deep learning to a wide range of professionals without a computer science background.‎

    • A familiarity with the capabilities and development process for deep learning applications can be an asset in a growing number of careers. For example, the use of deep learning is being explored in healthcare for automatic reading of radiology images, as well as searching for patterns in genes and pharmaceutical interactions that can aid in the discovery of new types of medicines. In many fields, even a basic understanding of deep learning can help professionals identify new potential applications of this powerful technology.

      Those with a deeper expertise in deep learning may become computer research scientists in this field, responsible for inventing new algorithms and finding new applications for these techniques. Given the wide range of uses for deep learning, computer scientists in this field are in high demand for jobs at private companies as well as government agencies and research universities. According to the Bureau of Labor Statistics, computer research scientists earned a median annual salary of $122,840 as of 2019, and these jobs are expected to grow much faster than average.‎

    • Certainly - in fact, Coursera is one of the best places to learn about deep learning. Through partnerships with deeplearning.ai and Stanford University, Coursera offers courses as well as Specializations taught by some of the pioneering thinkers and educators in this field. You can also learn via courses and Specializations from industry leaders such as Google Cloud and Intel, or get a professional certificate from IBM. Guided Projects also offer an opportunity to build skills in deep learning through hands-on tutorials led by experienced instructors, allowing you to learn with confidence.‎

    • The skills or experience you may need to have before studying deep learning, and which can help you better understand an advanced concept such as deep learning, can include sign language reading, music generation, and natural language processing (NLP), in addition to many others. If you have knowledge of Python 3 and understand the basic concepts of general machine-learning algorithms and deep learning, you may have the necessary skills to learn this specialization. You may also want to know about probability and statistics to study deep learning concepts. Basic math, such as algebra and calculus, is also an important prerequisite to deep learning because it relates to machine learning and data science. Also, if you have worked in the tech or artificial intelligence (AI) fields, you may have the necessary experience to study deep learning.‎

    • The type of person who is best suited to study deep learning is someone comfortable working with statistics, programming, advanced calculus, advanced algebra, and engineering. Deep learning benefits someone passionate about working in the AI fields which can create types of deep learning networks that help machines perform human functions. A person best suited to learn about deep learning has a vested interest in understanding how the intelligence is built to run everything from driverless cars, mobile devices, stock trading systems, and robotic surgery equipment, for example. Deep learning benefits someone with a goal of working with systems such as computer vision, speech recognition, NLP, audio recognition bioinformatics systems, and medical image analysis.‎

    • Deep learning may be right for you if you want to break into AI. The specialization may benefit you if you are a machine learning researcher or practitioner who is seeking to learn the next generation of machine learning, and you want to develop practical skills in the popular deep learning framework TensorFlow. Deep learning is one of the most highly sought-after skills in tech, and mastering it may lead you to many opportunities in the field of AI. It may also benefit you if you want to learn how to build neural networks and how to lead successful machine learning projects, and if you have a passion for learning about convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and how to master concepts in Python and TensorFlow.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Google デジタルマーケティング& E-コマースプロフェッショナル認定証
    • python プロフェッショナル認定証を有するGoogle ITオートメーション
    • Google ITサポート
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータアナリスト
    • IBMデータエンジニアリング
    • IBMデータサイエンス
    • IBMフルスタック・クラウドデベロッパー
    • IBM機械学習
    • インテュイット簿記
    • メタフロントエンド開発者
    • 深い学習。AI テンソルフロー開発プロフェッショナル認定証
    • SASプロフェッショナル認定証
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ
    • Python 構文のエラーを特定する方法
    • Pythonの例外をキャッチする方法
    • すべてのプログラミングチュートリアルを見る

    人気コースと認定

    • 無料コース
    • 人工知能コース
    • ブロックチェーンコース
    • コンピュータサイエンスコース
    • Cursos Gratis
    • サイバーセキュリティコース
    • データ分析コース
    • データサイエンスコース
    • 英語会話コース
    • フルスタックウェブ開発コース
    • Google コース
    • ヒューマンリソースコース
    • ITコース
    • 英語学習コース
    • マイクロソフトエクセルコース
    • 製品マネジメントコース
    • プロジェクトマネジメントコース
    • Pythonコース
    • SQL コース
    • 俊敏認定
    • CAPM認証
    • CompTIA A +認定
    • データ分析認定
    • スクラムマスター認定
    • すべてのコースを見る

    人気コレクションと記事

    • 1日で終了できる無料オンラインコース
    • 人気の無料コース
    • ビジネス仕事
    • サイバーセキュリティ仕事
    • IT仕事のエントリーレベル
    • データ分析者の面接質問
    • データ分析プロジェクト
    • データアナリストになる方法
    • プロジェクトマネージャーになる方法
    • ITスキル
    • プロジェクトマネージャーの面接質問
    • Pythonプログラミングスキル
    • 面接での強みと弱み
    • データアナリストは何をしますか
    • ソフトウェアエンジニアは何をしますか
    • データエンジニアとは
    • データサイエンティストとは
    • プロダクトデザイナーとは
    • スクラムマスターとは
    • UX検索とは
    • PMP認定を取得する方法
    • PMI認証
    • 人気のサイバーセキュリティ証明書
    • 人気の QL 証明書
    • courseraのすべての記事を読む

    オンラインで学位または証明書を取得する

    • Google プロフェッショナル認定プログラム
    • プロフェッショナル認定
    • すべての証明書を表示する
    • 学士号
    • 修士号
    • コンピュータサイエンスの学位
    • データサイエンスの学位
    • MBAとビジネス学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • 学士号と理学博士号の比較
    • 学士号とは何ですか?
    • 開発する11の良い学習習慣
    • 推薦状の書き方
    • ビジネスの学位で就ける需要の高い10の仕事
    • コンピュータサイエンスの修士課程は価値があるのか?
    • すべての学位プログラムを見る
    • Coursera India
    • Coursera UK
    • Coursera Mexico

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    Placeholder
    Placeholder
    Placeholder
    ©2023 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder