Coursera
  • オンライン学位学士号と修士号の詳細を見る
  • MasterTrack™修士号取得に向けて単位を取得
  • 大学証明書大学院レベルの学習でキャリアアップを目指す
キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Reinforcement Learning

    フィルター

    「reinforcement learning」の83件の結果

    • Placeholder
      University of Alberta

      Reinforcement Learning

      習得できるスキル: Machine Learning, Reinforcement Learning, Artificial Neural Networks, Entrepreneurship, Mathematics, Machine Learning Algorithms, Python Programming, Statistical Programming, Business Psychology, Computer Programming, Markov Model, Theoretical Computer Science, Algorithms, Deep Learning, Leadership and Management, Planning, Software Architecture, Software Engineering, Supply Chain and Logistics, Operations Research, Research and Design, Strategy and Operations

      4.7

      (3.1k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      DeepLearning.AI、Stanford University

      Machine Learning

      習得できるスキル: Machine Learning, Probability & Statistics, Machine Learning Algorithms, General Statistics, Theoretical Computer Science, Algorithms, Applied Machine Learning, Artificial Neural Networks, Regression, Econometrics, Computer Programming, Deep Learning, Python Programming, Statistical Programming, Mathematics, Tensorflow, Data Management, Data Structures, Statistical Machine Learning, Reinforcement Learning, Probability Distribution, Mathematical Theory & Analysis, Data Analysis, Data Mining, Linear Algebra, Computer Vision, Calculus, Feature Engineering, Bayesian Statistics, Operations Research, Research and Design, Strategy and Operations, Computational Logic, Accounting, Communication

      4.9

      (7.9k件のレビュー)

      Beginner · Specialization · 1-3 Months

    • Placeholder
      University of Alberta

      Fundamentals of Reinforcement Learning

      習得できるスキル: Machine Learning, Reinforcement Learning, Machine Learning Algorithms, Python Programming, Statistical Programming, Markov Model, Computer Programming, Mathematics, Operations Research, Research and Design, Strategy and Operations

      4.8

      (2.5k件のレビュー)

      Intermediate · Course · 1-3 Months

    • Placeholder
      DeepLearning.AI

      Unsupervised Learning, Recommenders, Reinforcement Learning

      習得できるスキル: Machine Learning, Probability & Statistics, Machine Learning Algorithms, General Statistics, Applied Machine Learning, Theoretical Computer Science, Algorithms, Mathematics, Reinforcement Learning, Econometrics, Data Management, Data Structures, Tensorflow, Artificial Neural Networks, Data Analysis, Data Mining, Mathematical Theory & Analysis, Probability Distribution, Bayesian Statistics, Computer Programming, Operations Research, Python Programming, Research and Design, Statistical Programming, Strategy and Operations, Communication

      4.9

      (767件のレビュー)

      Beginner · Course · 1-4 Weeks

    • Placeholder
      New York University

      Machine Learning and Reinforcement Learning in Finance

      習得できるスキル: Machine Learning, Finance, Machine Learning Algorithms, Mathematics, Algorithms, Probability & Statistics, Theoretical Computer Science, Applied Mathematics, Calculus, General Statistics, Investment Management, Artificial Neural Networks, Business Analysis, Data Analysis, Deep Learning, Financial Analysis, Machine Learning Software, Tensorflow, Advertising, Applied Machine Learning, Communication, Computer Programming, Entrepreneurship, Marketing, Markov Model, Operations Research, Python Programming, Research and Design, Statistical Machine Learning, Strategy and Operations

      3.7

      (770件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      DeepLearning.AI

      Deep Learning

      習得できるスキル: Deep Learning, Machine Learning, Artificial Neural Networks, Python Programming, Statistical Programming, Machine Learning Algorithms, Linear Algebra, Applied Machine Learning, Statistical Machine Learning, Dimensionality Reduction, Feature Engineering, Probability & Statistics, Business Psychology, Entrepreneurship, Machine Learning Software, Computer Vision, Marketing, General Statistics, Natural Language Processing, Computer Programming, Leadership and Management, Project Management, Regression, Sales, Strategy, Strategy and Operations, Tensorflow, Differential Equations, Mathematics, Applied Mathematics, Decision Making, Supply Chain Systems, Supply Chain and Logistics, Advertising, Communication, Estimation, Forecasting, Mathematical Theory & Analysis, Statistical Visualization, Algorithms, Theoretical Computer Science, Bayesian Statistics, Calculus, Probability Distribution, Statistical Tests, Big Data, Computer Architecture, Computer Networking, Data Management, Human Computer Interaction, Network Architecture, User Experience, Algebra, Computational Logic, Computer Graphic Techniques, Computer Graphics, Data Structures, Data Visualization, Hardware Design, Interactive Design, Markov Model, Network Model

      4.8

      (137.7k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      Google Cloud

      Machine Learning for Trading

      習得できるスキル: Machine Learning, Finance, Leadership and Management, Cloud Computing, Cloud Platforms, Risk Management, Strategy, Applied Machine Learning, Artificial Neural Networks, Entrepreneurship, Investment Management, Marketing, Probability & Statistics, Sales, Securities Trading, Strategy and Operations, Business Psychology, Computer Programming, General Statistics, Mathematics, Python Programming, Reinforcement Learning, Statistical Programming

      3.9

      (1k件のレビュー)

      Intermediate · Specialization · 1-3 Months

    • Placeholder
      Placeholder
      IBM Skills Network

      Deep Learning and Reinforcement Learning

      習得できるスキル: Deep Learning, Machine Learning, Artificial Neural Networks, Computer Vision, Computer Programming, Python Programming, Reinforcement Learning, Statistical Programming

      4.5

      (124件のレビュー)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      University of Alberta

      A Complete Reinforcement Learning System (Capstone)

      習得できるスキル: Artificial Neural Networks, Machine Learning, Reinforcement Learning

      4.7

      (583件のレビュー)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Placeholder
      New York Institute of Finance

      Reinforcement Learning for Trading Strategies

      習得できるスキル: Machine Learning, Artificial Neural Networks, Business Psychology, Cloud Computing, Computer Programming, Entrepreneurship, Finance, General Statistics, Investment Management, Leadership and Management, Marketing, Mathematics, Probability & Statistics, Python Programming, Reinforcement Learning, Sales, Statistical Programming, Strategy, Strategy and Operations

      3.6

      (204件のレビュー)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      Placeholder
      Alberta Machine Intelligence Institute

      Machine Learning: Algorithms in the Real World

      習得できるスキル: Machine Learning, Machine Learning Algorithms, Strategy and Operations, Applied Machine Learning, Mathematics, Algorithms, Artificial Neural Networks, Data Analysis, Regression, Theoretical Computer Science, Reinforcement Learning, Basic Descriptive Statistics, Computer Programming, Data Analysis Software, Data Warehousing, Exploratory Data Analysis, Extract, Transform, Load, Linear Algebra, Probability & Statistics, Python Programming, Statistical Analysis

      4.6

      (1k件のレビュー)

      Intermediate · Specialization · 3-6 Months

    • Placeholder
      Placeholder
      Google Cloud

      Advanced Machine Learning on Google Cloud

      習得できるスキル: Machine Learning, Cloud Computing, Google Cloud Platform, Cloud Platforms, Probability & Statistics, Business Psychology, General Statistics, Entrepreneurship, Statistical Programming, Apache, Cloud Applications, Data Management, Deep Learning, Machine Learning Software, Natural Language Processing, Python Programming, Reinforcement Learning, Tensorflow, Performance Management, Strategy and Operations, Applied Machine Learning, Artificial Neural Networks, Cloud API, Computational Thinking, Computer Architecture, Computer Programming, Computer Vision, Data Analysis, Data Engineering, Distributed Computing Architecture, Hardware Design, Machine Learning Algorithms, Other Cloud Platforms and Tools, Theoretical Computer Science

      4.5

      (1.4k件のレビュー)

      Advanced · Specialization · 3-6 Months

    reinforcement learningに関連する検索

    reinforcement learning in finance
    reinforcement learning for trading strategies
    reinforcement learning: qwik start
    a complete reinforcement learning system (capstone)
    fundamentals of reinforcement learning
    unsupervised learning, recommenders, reinforcement learning
    machine learning and reinforcement learning in finance
    deep learning and reinforcement learning
    1234…7

    要約して、reinforcement learning の人気コース10選をご紹介します。

    • Reinforcement Learning: University of Alberta
    • Machine Learning: DeepLearning.AI
    • Fundamentals of Reinforcement Learning: University of Alberta
    • Unsupervised Learning, Recommenders, Reinforcement Learning: DeepLearning.AI
    • Machine Learning and Reinforcement Learning in Finance: New York University
    • Deep Learning: DeepLearning.AI
    • Machine Learning for Trading: Google Cloud
    • Deep Learning and Reinforcement Learning: IBM Skills Network
    • A Complete Reinforcement Learning System (Capstone): University of Alberta
    • Reinforcement Learning for Trading Strategies: New York Institute of Finance

    Machine Learningで学べるスキル

    Pythonプログラミング (33)
    TensorFlow (32)
    ディープラーニング (30)
    人工ニューラルネットワーク (24)
    ビッグデータ (18)
    統計的分類 (17)
    代数 (10)
    ベイズ (10)
    線型代数学 (10)
    線形回帰 (9)
    NumPy (9)

    強化学習に関するよくある質問

    • Reinforcement learning is a machine learning paradigm in which software agents use a process of trial and error to learn how to complete tasks in a way that maximizes cumulative rewards as defined by their programmers. In contrast to supervised learning paradigms, reinforcement learning systems do not need labeled input/output pairs or explicit corrections of suboptimal actions; and, in contrast to unsupervised learning, reinforcement learning defines an explicit goal, which is the maximization of the value returned by the Q-learning (or “quality” learning) algorithm as a result of its actions.

      Because it combines the goal orientation of supervised learning with the flexibility of unsupervised learning, reinforcement learning is very important in creating artificial intelligence (AI) applications requiring successful problem-solving in complex situations. For example, they are often used in financial engineering to develop optimal trading algorithms for the stock market. They are also used to build intelligent systems to allow robots and self-driving cars to navigate real-world environments safely.‎

    • As one of the main paradigms for machine learning, reinforcement learning is an essential skill for careers in this fast-growing field. Reinforcement learning is particularly important for developing artificially intelligent digital agents for real-world problem-solving in industries like finance, automotive, robotics, logistics, and smart assistants. According to Glassdoor, the average annual salary for machine learning engineers in America is $114,121 per year, a high level of pay which reflects the high level of demand for this expertise.‎

    • Absolutely. Coursera hosts a wide variety of courses in reinforcement learning and related topics in machine learning, as well as the use of these techniques in applied contexts such as finance and self-driving cars. These courses and Specializations are offered by top-ranked institutions in this field, including the deepmind.ai, New York University, the University of Toronto, and the University of Alberta’s Machine Intelligence Institute. You can learn remotely on a flexible schedule while still getting feedback from expert professors and instructors, ensuring that you’ll get a high quality education with all the reinforcement you need to learn these valuable skills with confidence.‎

    • Because reinforcement learning itself isn't a beginner-level subject, you'll need to have a good grasp on the fundamentals of machine learning before starting to learn it. Additionally, many courses will require you to have a strong background in high-level mathematics such as linear algebra, statistics, and probability. Most courses will require you to be proficient in Python, although people familiar with other programming languages like C++, Matlab, and JavaScript can often use those skills to help them learn reinforcement learning. Having the ability to implement algorithms from pseudocode may be another prerequisite. As you progress, you'll gain skills in using reinforcement learning solutions to solve problems with probabilistic artificial intelligence, function approximation, and intelligent systems.‎

    • People best suited to roles within the reinforcement learning realm should have a passion for machine learning with a drive for analytics and data and an interest in providing frontline support to solve real-world problems while leveraging innate creative problem-solving skills. Additionally, many companies like to see that candidates have strong communication skills and the ability to collaborate across disciplines and departments. There are a variety of roles associated with reinforcement learning, including analysts, engineers, and researchers. In late February 2021, there were more than 1,800 job listings for people proficient in reinforcement learning on LinkedIn.‎

    • If you want to be a part of the future of machine learning, learning reinforcement learning may be a good move for you. This innovative machine learning technique creates an algorithm that learns through trial and error, leading to a combination of short- and long-term rewards such as the ability to define sequences to solve problems using a reward-based learning approach. It's useful across multiple industries, including the tech industry, business, advertising, finance, and e-commerce, all of which find reinforcement learning useful in part because of its ability to offer greater personalization. Ultimately, if you want to work within AI and machine learning, this could be a step to advancing your goals.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Google デジタルマーケティング& E-コマースプロフェッショナル認定証
    • python プロフェッショナル認定証を有するGoogle ITオートメーション
    • Google ITサポート
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータアナリスト
    • IBMデータエンジニアリング
    • IBMデータサイエンス
    • IBMフルスタック・クラウドデベロッパー
    • IBM機械学習
    • インテュイット簿記
    • メタフロントエンド開発者
    • 深い学習。AI テンソルフロー開発プロフェッショナル認定証
    • SASプロフェッショナル認定証
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ
    • Python 構文のエラーを特定する方法
    • Pythonの例外をキャッチする方法
    • すべてのプログラミングチュートリアルを見る

    人気コースと認定

    • 無料コース
    • 人工知能コース
    • ブロックチェーンコース
    • コンピュータサイエンスコース
    • Cursos Gratis
    • サイバーセキュリティコース
    • データ分析コース
    • データサイエンスコース
    • 英語会話コース
    • フルスタックウェブ開発コース
    • Google コース
    • ヒューマンリソースコース
    • ITコース
    • 英語学習コース
    • マイクロソフトエクセルコース
    • 製品マネジメントコース
    • プロジェクトマネジメントコース
    • Pythonコース
    • SQL コース
    • 俊敏認定
    • CAPM認証
    • CompTIA A +認定
    • データ分析認定
    • スクラムマスター認定
    • すべてのコースを見る

    人気コレクションと記事

    • 1日で終了できる無料オンラインコース
    • 人気の無料コース
    • ビジネス仕事
    • サイバーセキュリティ仕事
    • IT仕事のエントリーレベル
    • データ分析者の面接質問
    • データ分析プロジェクト
    • データアナリストになる方法
    • プロジェクトマネージャーになる方法
    • ITスキル
    • プロジェクトマネージャーの面接質問
    • Pythonプログラミングスキル
    • 面接での強みと弱み
    • データアナリストは何をしますか
    • ソフトウェアエンジニアは何をしますか
    • データエンジニアとは
    • データサイエンティストとは
    • プロダクトデザイナーとは
    • スクラムマスターとは
    • UX検索とは
    • PMP認定を取得する方法
    • PMI認証
    • 人気のサイバーセキュリティ証明書
    • 人気の QL 証明書
    • courseraのすべての記事を読む

    オンラインで学位または証明書を取得する

    • Google プロフェッショナル認定プログラム
    • プロフェッショナル認定
    • すべての証明書を表示する
    • 学士号
    • 修士号
    • コンピュータサイエンスの学位
    • データサイエンスの学位
    • MBAとビジネス学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • 学士号と理学博士号の比較
    • 学士号とは何ですか?
    • 開発する11の良い学習習慣
    • 推薦状の書き方
    • ビジネスの学位で就ける需要の高い10の仕事
    • コンピュータサイエンスの修士課程は価値があるのか?
    • すべての学位プログラムを見る
    • Coursera India
    • Coursera UK
    • Coursera Mexico

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    Placeholder
    Placeholder
    Placeholder
    ©2023 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder