Chevron Left
A Crash Course in Causality: Inferring Causal Effects from Observational Data に戻る

ペンシルベニア大学(University of Pennsylvania) による A Crash Course in Causality: Inferring Causal Effects from Observational Data の受講者のレビューおよびフィードバック

4.7
477件の評価

コースについて

We have all heard the phrase “correlation does not equal causation.” What, then, does equal causation? This course aims to answer that question and more! Over a period of 5 weeks, you will learn how causal effects are defined, what assumptions about your data and models are necessary, and how to implement and interpret some popular statistical methods. Learners will have the opportunity to apply these methods to example data in R (free statistical software environment). At the end of the course, learners should be able to: 1. Define causal effects using potential outcomes 2. Describe the difference between association and causation 3. Express assumptions with causal graphs 4. Implement several types of causal inference methods (e.g. matching, instrumental variables, inverse probability of treatment weighting) 5. Identify which causal assumptions are necessary for each type of statistical method So join us.... and discover for yourself why modern statistical methods for estimating causal effects are indispensable in so many fields of study!...

人気のレビュー

WJ

2021年9月11日

Great introduction on the causal analysis.The instructor did a great job on explaining the topic in a logical and rigorous way. R codes are very relevant and helpful to digest the material as well.

MF

2017年12月27日

I really enjoyed this course, the pace could be more even in parts. Sometimes the pace could be more even and some more books/reference material for further study would be nice.

フィルター:

A Crash Course in Causality: Inferring Causal Effects from Observational Data: 151 - 153 / 153 レビュー

by Scott M

2022年2月16日

by Siyu H

2021年2月14日

by Eva Y G

2019年9月28日