Chevron Left
Data Manipulation at Scale: Systems and Algorithms に戻る

ワシントン大学(University of Washington) による Data Manipulation at Scale: Systems and Algorithms の受講者のレビューおよびフィードバック

4.3
759件の評価

コースについて

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams...

人気のレビュー

HA

2016年1月10日

Great course that strikes a balance between teaching general principles and concepts, and providing hands-on technical skills and practice.

The lessons are well designed and clearly conveyed.

WL

2016年5月27日

I like the breadth of coverage of this class. Each of the exercise is a gem in that I get to learn something new also. I would highly recommend this even to experience practitioner also.

フィルター:

Data Manipulation at Scale: Systems and Algorithms: 126 - 150 / 165 レビュー

by Arto P

2015年12月7日

by Hannah M

2015年11月18日

by 罗杰彬

2015年10月29日

by Martin M

2017年1月4日

by Ingo B

2015年10月10日

by Dwayne B

2018年4月13日

by Andrea R

2020年3月29日

by Ryan S

2016年3月27日

by Fisher

2017年8月1日

by Griffin S

2015年10月4日

by James S

2018年1月6日

by Tushar T

2016年1月8日

by Daniel V

2017年5月30日

by Мария Х

2020年3月25日

by Ian P

2016年1月23日

by Marcio G

2017年1月6日

by Coen J

2016年2月22日

by Ganeshwara H H

2016年5月6日

by Andre J

2016年6月21日

by Igor S

2015年10月27日

by qiumi

2016年3月19日

by Cristian M A

2022年10月1日

by Ben K

2016年5月27日

by Supharerk T

2016年3月24日

by Diego P

2017年2月28日