Chevron Left
Data Manipulation at Scale: Systems and Algorithms に戻る

ワシントン大学(University of Washington) による Data Manipulation at Scale: Systems and Algorithms の受講者のレビューおよびフィードバック

4.3
759件の評価

コースについて

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams...

人気のレビュー

HA

2016年1月10日

Great course that strikes a balance between teaching general principles and concepts, and providing hands-on technical skills and practice.

The lessons are well designed and clearly conveyed.

WL

2016年5月27日

I like the breadth of coverage of this class. Each of the exercise is a gem in that I get to learn something new also. I would highly recommend this even to experience practitioner also.

フィルター:

Data Manipulation at Scale: Systems and Algorithms: 76 - 100 / 165 レビュー

by francisco y

2016年1月18日

by Muhammad Z H

2019年9月19日

by Ivan S

2017年5月11日

by Jan Z

2016年11月21日

by Dylan T

2017年5月6日

by Dany M

2017年8月21日

by Hao-En S

2015年11月14日

by Kenneth N

2017年5月15日

by Aayush M

2015年10月28日

by Kay S

2016年2月6日

by Christine H

2016年7月8日

by Jim S

2017年8月10日

by Andrew T

2015年12月2日

by Annavajjala S P A S

2017年3月13日

by sreeparna m

2017年9月18日

by Maxime B

2016年3月1日

by Joris D

2017年5月21日

by Fermin Q

2016年11月3日

by MICHEL S

2016年1月5日

by Anne-Marie D

2020年7月20日

by Yu-Heng H

2018年11月25日

by Wesley E

2016年10月4日

by Sajit K

2016年1月11日

by Alari

2015年12月2日

by Mandar B

2017年3月28日