Chevron Left
Communicating Data Science Results に戻る

ワシントン大学(University of Washington) による Communicating Data Science Results の受講者のレビューおよびフィードバック

3.6
135件の評価

コースについて

Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment. Further details regarding the process of receiving this credit are available in the welcome message for the course, as well as in the assignment itself. Please note that Amazon, University of Washington, and Coursera cannot reimburse you for any charges if you exhaust your credit. While we believe that this assignment contributes an excellent learning experience in this course, we understand that some learners may be unable or unwilling to use AWS. We are unable to issue Course Certificates for learners who do not complete the assignment that requires use of AWS. As such, you should not pay for a Course Certificate in Communicating Data Results if you are unable or unwilling to use AWS, as you will not be able to successfully complete the course without doing so. Making predictions is not enough! Effective data scientists know how to explain and interpret their results, and communicate findings accurately to stakeholders to inform business decisions. Visualization is the field of research in computer science that studies effective communication of quantitative results by linking perception, cognition, and algorithms to exploit the enormous bandwidth of the human visual cortex. In this course you will learn to recognize, design, and use effective visualizations. Just because you can make a prediction and convince others to act on it doesn’t mean you should. In this course you will explore the ethical considerations around big data and how these considerations are beginning to influence policy and practice. You will learn the foundational limitations of using technology to protect privacy and the codes of conduct emerging to guide the behavior of data scientists. You will also learn the importance of reproducibility in data science and how the commercial cloud can help support reproducible research even for experiments involving massive datasets, complex computational infrastructures, or both. Learning Goals: After completing this course, you will be able to: 1. Design and critique visualizations 2. Explain the state-of-the-art in privacy, ethics, governance around big data and data science 3. Use cloud computing to analyze large datasets in a reproducible way....

人気のレビュー

フィルター:

Communicating Data Science Results: 1 - 25 / 35 レビュー

by Vijay P

2019年6月8日

by Chen Y

2016年10月2日

by Mary A

2018年11月3日

by Reese

2017年6月22日

by Piyush K

2018年1月7日

by Red R

2022年1月11日

by Weng L

2016年6月6日

by Bingcheng L

2019年8月7日

by Shivanand R K

2016年6月18日

by Menghe L

2017年6月27日

by Daniel A

2015年12月18日

by Julia L

2016年2月9日

by Gregory R

2016年11月10日

by Seth

2016年1月14日

by Fermin Q

2016年11月12日

by Albert P

2017年6月18日

by Tebogo M

2017年2月2日

by Fernando S

2016年11月18日

by Ivajlo D

2018年11月13日

by Roberto S

2017年6月13日

by Joris D

2017年7月8日

by Solvita B

2016年4月20日

by Alexandre C

2016年4月1日

by Jana E

2017年12月7日

by Anton S

2015年12月19日