Chevron Left
Fundamentals of Scalable Data Science に戻る

IBM Skills Network による Fundamentals of Scalable Data Science の受講者のレビューおよびフィードバック

4.3
2,001件の評価

コースについて

Apache Spark is the de-facto standard for large scale data processing. This is the first course of a series of courses towards the IBM Advanced Data Science Specialization. We strongly believe that is is crucial for success to start learning a scalable data science platform since memory and CPU constraints are to most limiting factors when it comes to building advanced machine learning models. In this course we teach you the fundamentals of Apache Spark using python and pyspark. We'll introduce Apache Spark in the first two weeks and learn how to apply it to compute basic exploratory and data pre-processing tasks in the last two weeks. Through this exercise you'll also be introduced to the most fundamental statistical measures and data visualization technologies. This gives you enough knowledge to take over the role of a data engineer in any modern environment. But it gives you also the basis for advancing your career towards data science. Please have a look at the full specialization curriculum: https://www.coursera.org/specializations/advanced-data-science-ibm If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging. After completing this course, you will be able to: • Describe how basic statistical measures, are used to reveal patterns within the data • Recognize data characteristics, patterns, trends, deviations or inconsistencies, and potential outliers. • Identify useful techniques for working with big data such as dimension reduction and feature selection methods • Use advanced tools and charting libraries to: o improve efficiency of analysis of big-data with partitioning and parallel analysis o Visualize the data in an number of 2D and 3D formats (Box Plot, Run Chart, Scatter Plot, Pareto Chart, and Multidimensional Scaling) For successful completion of the course, the following prerequisites are recommended: • Basic programming skills in python • Basic math • Basic SQL (you can get it easily from https://www.coursera.org/learn/sql-data-science if needed) In order to complete this course, the following technologies will be used: (These technologies are introduced in the course as necessary so no previous knowledge is required.) • Jupyter notebooks (brought to you by IBM Watson Studio for free) • ApacheSpark (brought to you by IBM Watson Studio for free) • Python We've been reported that some of the material in this course is too advanced. So in case you feel the same, please have a look at the following materials first before starting this course, we've been reported that this really helps. Of course, you can give this course a try first and then in case you need, take the following courses / materials. It's free... https://cognitiveclass.ai/learn/spark https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/f8982db1-5e55-46d6-a272-fd11b670be38/view?access_token=533a1925cd1c4c362aabe7b3336b3eae2a99e0dc923ec0775d891c31c5bbbc68 This course takes four weeks, 4-6h per week...

人気のレビュー

EH

2021年7月21日

Nice course. Learned the basics of a lot of different topics. Nice to do a large Data Science project in the last part. So you can apply all learned theory

MA

2021年6月19日

Great Course but this would have been even a better course if more concepts and details were covered in it. Anyways, still a great course for beginners

フィルター:

Fundamentals of Scalable Data Science: 1 - 25 / 450 レビュー

by Mike D

2018年11月29日

by Marco D

2019年8月17日

by Vincenzo M

2018年4月13日

by David-Leigh B

2018年12月18日

by Qian L

2019年7月6日

by Mohanad A N

2019年3月10日

by Dr S K

2019年1月18日

by Ryan S

2018年12月23日

by Joe Z

2019年1月4日

by 唐志强

2018年8月22日

by Tyler G

2020年4月11日

by Denys v K

2018年12月27日

by Gabor K

2018年11月10日

by Octavio A T N

2019年10月26日

by Harshit S

2017年9月10日

by Matthew T

2019年2月8日

by Arseniy T

2020年1月12日

by Robert M

2019年6月12日

by Marcin S

2019年4月14日

by Vuong B A

2018年11月30日

by Marius J

2018年7月6日

by Jérémie B

2020年1月20日

by Zeeshan S

2021年1月14日

by Chirag S

2018年7月9日

by Jose L R

2018年9月30日