Chevron Left
ETL and Data Pipelines with Shell, Airflow and Kafka に戻る

IBM Skills Network による ETL and Data Pipelines with Shell, Airflow and Kafka の受講者のレビューおよびフィードバック

4.4
138件の評価

コースについて

After taking this course, you will be able to describe two different approaches to converting raw data into analytics-ready data. One approach is the Extract, Transform, Load (ETL) process. The other contrasting approach is the Extract, Load, and Transform (ELT) process. ETL processes apply to data warehouses and data marts. ELT processes apply to data lakes, where the data is transformed on demand by the requesting/calling application. Both ETL and ELT extract data from source systems, move the data through the data pipeline, and store the data in destination systems. During this course, you will experience how ELT and ETL processing differ and identify use cases for both. You will identify methods and tools used for extracting the data, merging extracted data either logically or physically, and for importing data into data repositories. You will also define transformations to apply to source data to make the data credible, contextual, and accessible to data users. You will be able to outline some of the multiple methods for loading data into the destination system, verifying data quality, monitoring load failures, and the use of recovery mechanisms in case of failure. Finally, you will complete a shareable final project that enables you to demonstrate the skills you acquired in each module....

人気のレビュー

MB

2022年10月11日

Course Is Good but, if you can add some more practicles that will surely help understand better and help all learner grasp things very quickly.

DS

2022年6月13日

Excellent introduction to this topics. Labs contain all you need to know how to start using this type of technologies. Highly recommended.

フィルター:

ETL and Data Pipelines with Shell, Airflow and Kafka: 26 - 39 / 39 レビュー

by WONG L X

2022年8月20日

by Minh N T

2022年4月12日

by Muhammad T K

2022年7月9日

by Albin C

2022年10月9日

by Olabode A

2022年10月20日

by Markus Z

2022年3月28日

by David R

2022年6月4日

by otto z

2022年6月22日

by Mbaye B

2022年5月14日

by Krishnakumar K

2022年4月12日

by Mimi Z

2022年10月28日

by Yao G A

2022年2月25日

by Roberta B

2022年4月3日

by BO W

2022年7月8日