Chevron Left
Introduction to Accounting Data Analytics and Visualization に戻る

イリノイ大学アーバナ・シャンペーン校(University of Illinois at Urbana-Champaign) による Introduction to Accounting Data Analytics and Visualization の受講者のレビューおよびフィードバック

4.8
400件の評価

コースについて

Accounting has always been about analytical thinking. From the earliest days of the profession, Luca Pacioli emphasized the importance of math and order for analyzing business transactions. The skillset that accountants have needed to perform math and to keep order has evolved from pencil and paper, to typewriters and calculators, then to spreadsheets and accounting software. A new skillset that is becoming more important for nearly every aspect of business is that of big data analytics: analyzing large amounts of data to find actionable insights. This course is designed to help accounting students develop an analytical mindset and prepare them to use data analytic programming languages like Python and R. We’ve divided the course into three main sections. In the first section, we bridge accountancy to analytics. We identify how tasks in the five major subdomains of accounting (i.e., financial, managerial, audit, tax, and systems) have historically required an analytical mindset, and we then explore how those tasks can be completed more effectively and efficiently by using big data analytics. We then present a FACT framework for guiding big data analytics: Frame a question, Assemble data, Calculate the data, and Tell others about the results. In the second section of the course, we emphasize the importance of assembling data. Using financial statement data, we explain desirable characteristics of both data and datasets that will lead to effective calculations and visualizations. In the third, and largest section of the course, we demonstrate and explore how Excel and Tableau can be used to analyze big data. We describe visual perception principles and then apply those principles to create effective visualizations. We then examine fundamental data analytic tools, such as regression, linear programming (using Excel Solver), and clustering in the context of point of sale data and loan data. We conclude by demonstrating the power of data analytic programming languages to assemble, visualize, and analyze data. We introduce Visual Basic for Applications as an example of a programming language, and the Visual Basic Editor as an example of an integrated development environment (IDE)....

人気のレビュー

YH

2020年5月30日

It teaches us the basics of data analytics and it is very progressive. There are assignments to help us understand and practice the methods being taught. This allows us to have first-hand experiences.

CT

2021年11月6日

I have learn a lot of solid knowledge about Data Visualization, Excel VBA, and programming hints from this course. I recommend this course to those who wants to skill up on Excel and Data analytic.

フィルター:

Introduction to Accounting Data Analytics and Visualization: 26 - 50 / 78 レビュー

by Ali A

2021年12月11日

by Yeo Z H

2020年5月31日

by CHENG L T

2021年11月7日

by Lee Y

2020年6月3日

by Xiaojin L

2022年11月30日

by Michael J

2020年12月18日

by Toh P Q

2020年9月27日

by Raji R

2020年8月24日

by Annabelle S S Z

2020年9月20日

by GOH K Y

2020年7月9日

by Jaslyn L

2020年7月9日

by Yunchae S

2021年5月20日

by Sithandazile Z D

2020年9月2日

by Chiam Z S

2020年6月1日

by Goh J Y D

2020年8月12日

by Fabian T

2020年7月5日

by Jesús A S G

2022年2月2日

by Jurgita Z

2020年7月19日

by Edmund K C H

2020年7月20日

by Muhammad A B A R

2020年6月25日

by Mutra T T W K

2020年7月16日

by ANAND K

2022年9月20日

by Loh D W

2020年5月27日

by Kyoungmo K

2021年10月22日

by yash s

2022年11月20日