Chevron Left
Introduction to Accounting Data Analytics and Visualization に戻る

イリノイ大学アーバナ・シャンペーン校(University of Illinois at Urbana-Champaign) による Introduction to Accounting Data Analytics and Visualization の受講者のレビューおよびフィードバック

4.8
400件の評価

コースについて

Accounting has always been about analytical thinking. From the earliest days of the profession, Luca Pacioli emphasized the importance of math and order for analyzing business transactions. The skillset that accountants have needed to perform math and to keep order has evolved from pencil and paper, to typewriters and calculators, then to spreadsheets and accounting software. A new skillset that is becoming more important for nearly every aspect of business is that of big data analytics: analyzing large amounts of data to find actionable insights. This course is designed to help accounting students develop an analytical mindset and prepare them to use data analytic programming languages like Python and R. We’ve divided the course into three main sections. In the first section, we bridge accountancy to analytics. We identify how tasks in the five major subdomains of accounting (i.e., financial, managerial, audit, tax, and systems) have historically required an analytical mindset, and we then explore how those tasks can be completed more effectively and efficiently by using big data analytics. We then present a FACT framework for guiding big data analytics: Frame a question, Assemble data, Calculate the data, and Tell others about the results. In the second section of the course, we emphasize the importance of assembling data. Using financial statement data, we explain desirable characteristics of both data and datasets that will lead to effective calculations and visualizations. In the third, and largest section of the course, we demonstrate and explore how Excel and Tableau can be used to analyze big data. We describe visual perception principles and then apply those principles to create effective visualizations. We then examine fundamental data analytic tools, such as regression, linear programming (using Excel Solver), and clustering in the context of point of sale data and loan data. We conclude by demonstrating the power of data analytic programming languages to assemble, visualize, and analyze data. We introduce Visual Basic for Applications as an example of a programming language, and the Visual Basic Editor as an example of an integrated development environment (IDE)....

人気のレビュー

YH

2020年5月30日

It teaches us the basics of data analytics and it is very progressive. There are assignments to help us understand and practice the methods being taught. This allows us to have first-hand experiences.

CT

2021年11月6日

I have learn a lot of solid knowledge about Data Visualization, Excel VBA, and programming hints from this course. I recommend this course to those who wants to skill up on Excel and Data analytic.

フィルター:

Introduction to Accounting Data Analytics and Visualization: 51 - 75 / 77 レビュー

by Lim T F

2020年8月11日

by Zachary B

2022年11月1日

by Chow K M

2021年6月17日

by Manmohan D

2021年11月10日

by Ouyang Y

2020年7月9日

by CHEN Y

2022年8月2日

by Gilda H

2020年11月3日

by Samuel L K L

2020年10月3日

by Shawn S W X

2020年8月12日

by Nga P R K

2020年8月14日

by CHEN Y

2020年7月21日

by عرفات ا

2022年11月11日

by Jim H

2022年5月12日

by Alejandra R

2020年10月14日

by Saviour U (

2022年6月10日

by Shuvro D B

2020年11月1日

by Huda A A A A

2020年7月19日

by Orman A

2020年6月14日

by Aw Z Y

2020年6月1日

by shuen

2020年7月20日

by Deleted A

2020年6月3日

by Kudakwashe C

2021年3月26日

by John W

2021年3月1日

by Sreelakshmi M

2021年12月6日

by Sue C

2022年9月7日