Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,682件の評価

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM

2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 301 - 325 / 578 レビュー

by Lixin L

2017年5月7日

by MRS. G

2020年5月9日

by Satish K D

2019年2月3日

by FanPingjie

2018年12月9日

by Lars N

2016年10月4日

by Venkata D

2016年4月14日

by Brian N

2018年5月20日

by Mark h

2017年7月27日

by Shiva R

2017年4月16日

by Shanchuan L

2016年12月7日

by Changik C

2016年10月25日

by Alexander S

2016年8月7日

by Yacine M T

2019年7月31日

by Fakhre A

2017年2月17日

by Weituo H

2016年3月14日

by Gaurav K

2020年9月19日

by GURUSUBRAMANI. S

2020年5月24日

by Kevin Y

2017年6月26日

by Sami A

2016年5月20日

by stephon_lu

2017年12月23日

by Michael P

2016年12月6日

by 쥬

2016年6月30日

by AJAY K

2019年10月13日

by Muhammad Z H

2019年8月30日

by Luis E T N

2017年7月4日