Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,683件の評価

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM

2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 526 - 550 / 578 レビュー

by 오승윤

2016年12月3日

by Tom L

2016年10月21日

by Oliverio J S J

2018年6月17日

by Francesco

2019年11月15日

by Nitzan O

2016年4月25日

by ANIMESH M

2020年9月4日

by Kumar B

2017年10月4日

by Neelkanth S M

2019年4月8日

by D B

2018年6月13日

by Eric A J C

2021年8月5日

by ANGELICA D C

2020年9月22日

by Supharerk T

2016年7月6日

by nazar p

2017年6月29日

by Rohit J

2016年5月12日

by Ilan S

2016年11月23日

by Rahul S

2020年6月17日

by Fengchen G

2016年5月19日

by Tu L

2018年6月27日

by Mounir

2016年6月19日

by Pier L L

2017年3月26日

by Dmitri B

2017年6月6日

by Ashish C

2019年3月31日

by Matt T

2016年4月12日

by Virgil P

2018年2月18日

by 陈弘毅

2018年2月3日