Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,683件の評価

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM

2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 426 - 450 / 578 レビュー

by Subikesh P S

2020年6月11日

by Anjan P

2016年4月29日

by George P

2017年10月23日

by Kamil Z

2017年8月31日

by Karen B

2016年7月29日

by Sacha v W

2018年11月10日

by Michael C

2016年4月7日

by Shahin S

2016年9月15日

by MITUL T

2020年9月2日

by Di C L

2022年10月21日

by Jordy J C R

2022年11月22日

by Naveendhar

2019年8月9日

by Stefano T

2016年3月15日

by Marku v d s

2017年12月23日

by Lorenzo L

2018年8月31日

by Craig B

2016年12月19日

by Nitin K M

2019年11月6日

by KANDARP B S

2017年3月2日

by Aleksander G

2016年4月11日

by Jaime A C B

2016年9月12日

by Nicolas S

2020年1月2日

by Martin B

2019年4月11日

by J N B P

2020年10月9日

by Uichong D L

2017年9月17日

by João S

2016年4月18日