Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,682件の評価

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM

2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS

2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 451 - 475 / 578 レビュー

by David F

2016年8月7日

by Ahmed N

2018年2月22日

by Eric M

2017年4月15日

by Dawid L

2017年3月20日

by Thuc D X

2019年6月27日

by Gaurav K J

2018年5月1日

by Justin K

2016年6月10日

by Hao H

2016年6月12日

by 김대성

2021年3月23日

by Fangzhe G

2020年2月7日

by Brian B

2016年4月22日

by Fahad S

2018年11月3日

by Aaron

2020年7月3日

by Alexis C

2016年9月29日

by Kishaan J

2017年7月1日

by Raisa M

2017年8月19日

by Ning A

2016年9月16日

by Yingnan X

2016年4月14日

by Oleg R

2016年10月9日

by Thrivikrama

2016年10月12日

by Tomasz J

2016年4月4日

by Baubak G

2018年6月10日

by Simon C

2020年5月1日

by Scott A

2021年7月19日

by Srinivas C

2018年12月2日