Chevron Left
Machine Learning Foundations: A Case Study Approach に戻る

ワシントン大学(University of Washington) による Machine Learning Foundations: A Case Study Approach の受講者のレビューおよびフィードバック

4.6
13,189件の評価

コースについて

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

人気のレビュー

BL

2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

SZ

2016年12月19日

Great course!

Emily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.

フィルター:

Machine Learning Foundations: A Case Study Approach: 276 - 300 / 3,056 レビュー

by Yogeshwar G

2017年4月28日

by Willismar M C

2016年8月31日

by Anindya S

2016年1月2日

by Roberto C

2015年10月22日

by Phuong N

2017年6月23日

by Abhijit P

2017年7月17日

by Khandaker S M

2020年6月11日

by Wan S L

2016年6月12日

by Moez B

2017年1月3日

by Freddie S

2016年7月25日

by Carlos D M

2015年12月21日

by Lingqi Z

2015年9月28日

by Daniel S

2015年12月12日

by Satish M G

2016年12月8日

by Saravana P P

2015年12月20日

by Saravanan C

2017年5月26日

by Ashar M

2016年10月23日

by Genyu Z

2019年1月20日

by Alberto V H

2017年1月14日

by Andre J

2016年3月18日

by Haritz P

2016年3月1日

by Rohit G

2015年12月10日

by Maria Z

2017年10月16日

by Zachary C

2017年4月29日

by Miguel A P L

2016年11月28日