Chevron Left
Machine Learning Foundations: A Case Study Approach に戻る

ワシントン大学(University of Washington) による Machine Learning Foundations: A Case Study Approach の受講者のレビューおよびフィードバック

4.6
13,189件の評価

コースについて

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

人気のレビュー

BL

2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

SZ

2016年12月19日

Great course!

Emily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.

フィルター:

Machine Learning Foundations: A Case Study Approach: 301 - 325 / 3,056 レビュー

by Gurunath M K

2019年9月30日

by Supriya N P K

2015年12月9日

by amal s

2020年4月28日

by Peter G

2016年2月26日

by Zachary N

2015年12月13日

by Aman A

2016年5月26日

by Mayuresh W

2015年11月23日

by Gérard Y

2018年7月27日

by gaoyu_xinghuo

2016年6月20日

by Daniel R

2016年2月7日

by Arjun P

2020年3月24日

by alexandre l f

2017年10月22日

by Raphael K

2016年2月29日

by Yaobang C

2018年8月29日

by Jose N N P

2018年3月30日

by Easton L

2017年2月25日

by Alan B

2020年5月14日

by Martin K

2016年3月26日

by don-E M

2015年12月13日

by Anatoly M

2017年4月16日

by Ravindra P

2020年5月26日

by Vinay S

2016年6月1日

by Ravindra M

2015年12月8日

by Varun M

2018年3月12日

by Rick P

2016年8月13日