Chevron Left
Machine Learning Foundations: A Case Study Approach に戻る

ワシントン大学(University of Washington) による Machine Learning Foundations: A Case Study Approach の受講者のレビューおよびフィードバック

4.6
13,191件の評価

コースについて

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

人気のレビュー

SZ

2016年12月19日

Great course!

Emily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.

BL

2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

フィルター:

Machine Learning Foundations: A Case Study Approach: 3026 - 3050 / 3,056 レビュー

by Konstantinos V

2021年11月3日

by Bharath K V

2021年12月13日

by Aaron B

2022年6月29日

by Muhammad A A J

2021年7月12日

by Kunal V

2020年9月22日

by Marius M

2020年7月8日

by Florea G A

2020年10月11日

by MARC G

2022年11月30日

by Bowen S

2021年11月25日

by Anoop B

2020年12月2日

by andrew r

2020年11月25日

by Kailash H S N

2021年8月25日

by Sudheesh R S

2020年7月11日

by Arpit S

2020年5月22日

by Pratick B

2021年8月8日

by Mohamed M

2021年9月28日

by Eunyoung C

2020年8月29日

by Christian C

2021年6月5日

by Sunita b l

2020年7月4日

by Melissa F

2021年8月2日

by Nguyen K D

2020年6月18日

by Jeni

2020年4月17日

by MD D I

2020年6月26日

by ABHISHEK S

2020年6月18日

by Maria C R B V F

2022年9月17日