Chevron Left
Build, Train, and Deploy ML Pipelines using BERT に戻る

deeplearning.ai による Build, Train, and Deploy ML Pipelines using BERT の受講者のレビューおよびフィードバック

4.6
114件の評価

コースについて

In the second course of the Practical Data Science Specialization, you will learn to automate a natural language processing task by building an end-to-end machine learning pipeline using Hugging Face’s highly-optimized implementation of the state-of-the-art BERT algorithm with Amazon SageMaker Pipelines. Your pipeline will first transform the dataset into BERT-readable features and store the features in the Amazon SageMaker Feature Store. It will then fine-tune a text classification model to the dataset using a Hugging Face pre-trained model, which has learned to understand the human language from millions of Wikipedia documents. Finally, your pipeline will evaluate the model’s accuracy and only deploy the model if the accuracy exceeds a given threshold. Practical data science is geared towards handling massive datasets that do not fit in your local hardware and could originate from multiple sources. One of the biggest benefits of developing and running data science projects in the cloud is the agility and elasticity that the cloud offers to scale up and out at a minimum cost. The Practical Data Science Specialization helps you develop the practical skills to effectively deploy your data science projects and overcome challenges at each step of the ML workflow using Amazon SageMaker. This Specialization is designed for data-focused developers, scientists, and analysts familiar with the Python and SQL programming languages and want to learn how to build, train, and deploy scalable, end-to-end ML pipelines - both automated and human-in-the-loop - in the AWS cloud....

人気のレビュー

SL

2021年7月5日

It is one of course with the exact content required for an working professional who is already working with AWS and want to leverage the benefits of sagemaker for their ML deployment tasks

YV

2021年7月27日

Simple to learn but there are lot of takeaways which helps any data scientist or a machine learning engineer!

フィルター:

Build, Train, and Deploy ML Pipelines using BERT: 1 - 24 / 24 レビュー

by Pablo A B

2021年7月5日

by Sneha L

2021年7月6日

by Israel T

2021年6月19日

by Mark P

2021年9月13日

by Magnus M

2021年6月14日

by Aleksa B

2021年11月2日

by yugesh v

2021年7月28日

by RLee

2022年7月28日

by Janzaib M

2022年4月17日

by The M

2022年4月24日

by Ozma M

2021年7月18日

by Anzor G

2021年12月27日

by Tenzin T

2021年9月7日

by John S

2021年10月6日

by 学洲 刘

2022年2月6日

by Alexander M

2021年7月22日

by Diego M

2021年11月20日

by Burhanudin B

2022年6月3日

by Mosleh M

2021年8月6日

by Sanjay C

2022年1月17日

by Muneeb V

2021年12月14日

by Parag K

2021年10月22日

by Clashing P

2021年10月8日

by Md. W A

2022年3月27日