Chevron Left
Prediction and Control with Function Approximation に戻る

アルバータ大学(University of Alberta) による Prediction and Control with Function Approximation の受講者のレビューおよびフィードバック

4.8
749件の評価

コースについて

In this course, you will learn how to solve problems with large, high-dimensional, and potentially infinite state spaces. You will see that estimating value functions can be cast as a supervised learning problem---function approximation---allowing you to build agents that carefully balance generalization and discrimination in order to maximize reward. We will begin this journey by investigating how our policy evaluation or prediction methods like Monte Carlo and TD can be extended to the function approximation setting. You will learn about feature construction techniques for RL, and representation learning via neural networks and backprop. We conclude this course with a deep-dive into policy gradient methods; a way to learn policies directly without learning a value function. In this course you will solve two continuous-state control tasks and investigate the benefits of policy gradient methods in a continuous-action environment. Prerequisites: This course strongly builds on the fundamentals of Courses 1 and 2, and learners should have completed these before starting this course. Learners should also be comfortable with probabilities & expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), and implementing algorithms from pseudocode. By the end of this course, you will be able to: -Understand how to use supervised learning approaches to approximate value functions -Understand objectives for prediction (value estimation) under function approximation -Implement TD with function approximation (state aggregation), on an environment with an infinite state space (continuous state space) -Understand fixed basis and neural network approaches to feature construction -Implement TD with neural network function approximation in a continuous state environment -Understand new difficulties in exploration when moving to function approximation -Contrast discounted problem formulations for control versus an average reward problem formulation -Implement expected Sarsa and Q-learning with function approximation on a continuous state control task -Understand objectives for directly estimating policies (policy gradient objectives) -Implement a policy gradient method (called Actor-Critic) on a discrete state environment...

人気のレビュー

WP

2020年4月11日

Difficult but excellent and impressing. Human being is incredible creating such ideas. This course shows a way to the state when all such ingenious ideas will be created by self learning algorithms.

AC

2019年12月1日

Well peaced and thoughtfully explained course. Highly recommended for anyone willing to set solid grounding in Reinforcement Learning. Thank you Coursera and Univ. of Alberta for the masterclass.

フィルター:

Prediction and Control with Function Approximation: 51 - 75 / 133 レビュー

by Andrew G

2020年1月26日

by Alexander P

2019年12月14日

by Mathew

2020年6月7日

by Ayan S

2021年7月4日

by Johannes

2021年9月13日

by Joosung M

2020年6月14日

by Tolga K

2020年12月25日

by J B

2020年10月13日

by LI C Y

2022年8月14日

by Eduardo I L H

2021年1月14日

by Yitao H

2021年8月29日

by Huang C

2022年1月25日

by RICARDO A F S

2020年11月21日

by Artur M

2020年11月3日

by George M

2021年3月11日

by Chang, W C

2019年10月14日

by Rishi R

2020年8月3日

by Kaustubh S

2019年12月24日

by Max C

2019年11月1日

by Sergey M

2021年10月15日

by Saulo A G S

2022年8月12日

by LIWANGZHI

2020年1月27日

by Pachi C

2019年12月31日

by 석박통합김한준

2020年4月25日

by Raktim P

2019年12月17日