Chevron Left
Prediction and Control with Function Approximation に戻る

アルバータ大学(University of Alberta) による Prediction and Control with Function Approximation の受講者のレビューおよびフィードバック

4.8
748件の評価

コースについて

In this course, you will learn how to solve problems with large, high-dimensional, and potentially infinite state spaces. You will see that estimating value functions can be cast as a supervised learning problem---function approximation---allowing you to build agents that carefully balance generalization and discrimination in order to maximize reward. We will begin this journey by investigating how our policy evaluation or prediction methods like Monte Carlo and TD can be extended to the function approximation setting. You will learn about feature construction techniques for RL, and representation learning via neural networks and backprop. We conclude this course with a deep-dive into policy gradient methods; a way to learn policies directly without learning a value function. In this course you will solve two continuous-state control tasks and investigate the benefits of policy gradient methods in a continuous-action environment. Prerequisites: This course strongly builds on the fundamentals of Courses 1 and 2, and learners should have completed these before starting this course. Learners should also be comfortable with probabilities & expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), and implementing algorithms from pseudocode. By the end of this course, you will be able to: -Understand how to use supervised learning approaches to approximate value functions -Understand objectives for prediction (value estimation) under function approximation -Implement TD with function approximation (state aggregation), on an environment with an infinite state space (continuous state space) -Understand fixed basis and neural network approaches to feature construction -Implement TD with neural network function approximation in a continuous state environment -Understand new difficulties in exploration when moving to function approximation -Contrast discounted problem formulations for control versus an average reward problem formulation -Implement expected Sarsa and Q-learning with function approximation on a continuous state control task -Understand objectives for directly estimating policies (policy gradient objectives) -Implement a policy gradient method (called Actor-Critic) on a discrete state environment...

人気のレビュー

WP

2020年4月11日

Difficult but excellent and impressing. Human being is incredible creating such ideas. This course shows a way to the state when all such ingenious ideas will be created by self learning algorithms.

AC

2019年12月1日

Well peaced and thoughtfully explained course. Highly recommended for anyone willing to set solid grounding in Reinforcement Learning. Thank you Coursera and Univ. of Alberta for the masterclass.

フィルター:

Prediction and Control with Function Approximation: 26 - 50 / 133 レビュー

by Steven H

2020年7月9日

by Farhad A

2020年6月9日

by Chamani S

2021年2月2日

by Wojtek P

2020年4月12日

by Rafael B M

2020年9月1日

by Antonio C

2019年12月2日

by Sandesh J

2020年6月25日

by Jose M R F

2020年8月14日

by ding l

2020年6月1日

by Akash B

2019年11月5日

by Niju M N

2020年10月24日

by Christos P

2020年1月19日

by Jau-Jie Y

2021年7月7日

by Eric B

2021年11月14日

by Roberto M

2020年3月29日

by John J

2020年4月28日

by Sandro A

2020年7月29日

by Douglas D R M

2021年5月21日

by Casey S S

2021年2月11日

by Bhooshan V

2021年9月3日

by Kinal M

2020年1月12日

by Ivan S F

2019年11月9日

by Yingping Z

2021年1月2日

by Jicheng F

2020年7月11日

by Wahyu G

2020年3月27日