Chevron Left
Probabilistic Deep Learning with TensorFlow 2 に戻る

インペリアル・カレッジ・ロンドン(Imperial College London) による Probabilistic Deep Learning with TensorFlow 2 の受講者のレビューおよびフィードバック

4.7
86件の評価

コースについて

Welcome to this course on Probabilistic Deep Learning with TensorFlow! This course builds on the foundational concepts and skills for TensorFlow taught in the first two courses in this specialisation, and focuses on the probabilistic approach to deep learning. This is an increasingly important area of deep learning that aims to quantify the noise and uncertainty that is often present in real world datasets. This is a crucial aspect when using deep learning models in applications such as autonomous vehicles or medical diagnoses; we need the model to know what it doesn't know. You will learn how to develop probabilistic models with TensorFlow, making particular use of the TensorFlow Probability library, which is designed to make it easy to combine probabilistic models with deep learning. As such, this course can also be viewed as an introduction to the TensorFlow Probability library. You will learn how probability distributions can be represented and incorporated into deep learning models in TensorFlow, including Bayesian neural networks, normalising flows and variational autoencoders. You will learn how to develop models for uncertainty quantification, as well as generative models that can create new samples similar to those in the dataset, such as images of celebrity faces. You will put concepts that you learn about into practice straight away in practical, hands-on coding tutorials, which you will be guided through by a graduate teaching assistant. In addition there is a series of automatically graded programming assignments for you to consolidate your skills. At the end of the course, you will bring many of the concepts together in a Capstone Project, where you will develop a variational autoencoder algorithm to produce a generative model of a synthetic image dataset that you will create yourself. This course follows on from the previous two courses in the specialisation, Getting Started with TensorFlow 2 and Customising Your Models with TensorFlow 2. The additional prerequisite knowledge required in order to be successful in this course is a solid foundation in probability and statistics. In particular, it is assumed that you are familiar with standard probability distributions, probability density functions, and concepts such as maximum likelihood estimation, change of variables formula for random variables, and the evidence lower bound (ELBO) used in variational inference....

人気のレビュー

BB

2021年12月16日

This has been a great course! The lecture videos are clear, concise, and to the point. The assignments are perfectly structured and the feedbacks from assignments are super helpful.

MD

2021年7月26日

A really valuable learning experience. With these courses, I now feel confident that I can apply the skills from the Deep Learning Specialization in a practical setting.

フィルター:

Probabilistic Deep Learning with TensorFlow 2: 1 - 25 / 34 レビュー

by Asad K

2020年12月10日

by Nathan W

2021年4月16日

by Carl T

2020年10月26日

by Fabio K

2020年12月29日

by Omkar K

2021年3月9日

by Chung-I L

2021年4月1日

by Max K

2021年1月31日

by mgbacher

2021年5月19日

by Nghĩa P

2022年3月22日

by Marios K

2020年11月20日

by Manuel B

2021年11月27日

by Kanji O

2021年4月9日

by Rafael O

2021年2月28日

by Martin F

2021年12月14日

by Selva K R

2021年4月8日

by Steven C S

2021年10月11日

by Maxim V

2021年4月7日

by Ajay A

2021年12月13日

by Anubhav T

2021年8月21日

by Rajendra A

2021年7月16日

by Behnam

2021年12月17日

by Michael D

2021年7月27日

by Yonatan F

2022年9月14日

by Vinh D V

2022年7月2日

by fan c

2021年3月28日