Chevron Left
Probabilistic Graphical Models 2: Inference に戻る

スタンフォード大学(Stanford University) による Probabilistic Graphical Models 2: Inference の受講者のレビューおよびフィードバック

4.6
477件の評価

コースについて

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the second in a sequence of three. Following the first course, which focused on representation, this course addresses the question of probabilistic inference: how a PGM can be used to answer questions. Even though a PGM generally describes a very high dimensional distribution, its structure is designed so as to allow questions to be answered efficiently. The course presents both exact and approximate algorithms for different types of inference tasks, and discusses where each could best be applied. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of the most commonly used exact and approximate algorithms are implemented and applied to a real-world problem....

人気のレビュー

AT

2019年8月22日

Just like the first course of the specialization, this course is really good. It is well organized and taught in the best way which really helped me to implement similar ideas for my projects.

AL

2019年8月19日

I have clearly learnt a lot during this course. Even though some things should be updated and maybe completed, I would definitely recommend it to anyone whose interest lies in PGMs.

フィルター:

Probabilistic Graphical Models 2: Inference: 51 - 74 / 74 レビュー

by Péter D

2017年11月14日

by Ricardo A M C

2021年1月18日

by mgbacher

2021年1月19日

by Amine M

2019年5月14日

by Diogo P

2017年10月24日

by Akshaya T

2019年3月14日

by Diego T

2017年6月9日

by Michael G

2016年12月14日

by Siwei G

2017年6月15日

by Rajeev B A

2017年12月23日

by Maxim V

2020年5月5日

by Luiz C

2018年7月31日

by Rishabh G

2020年5月16日

by Gorazd H R

2018年7月7日

by Kalyan D

2018年11月5日

by G.K.Vikram

2017年7月24日

by Ivan V

2017年7月31日

by Phillip W

2019年5月1日

by Jesus I G R

2019年10月15日

by Siwei Y

2017年1月17日

by Chris V

2016年12月13日

by Tomer N

2018年6月20日

by Thomas W

2017年5月5日

by fan

2016年11月19日