Chevron Left
Sample-based Learning Methods に戻る

アルバータ大学(University of Alberta) による Sample-based Learning Methods の受講者のレビューおよびフィードバック

4.8
1,136件の評価

コースについて

In this course, you will learn about several algorithms that can learn near optimal policies based on trial and error interaction with the environment---learning from the agent’s own experience. Learning from actual experience is striking because it requires no prior knowledge of the environment’s dynamics, yet can still attain optimal behavior. We will cover intuitively simple but powerful Monte Carlo methods, and temporal difference learning methods including Q-learning. We will wrap up this course investigating how we can get the best of both worlds: algorithms that can combine model-based planning (similar to dynamic programming) and temporal difference updates to radically accelerate learning. By the end of this course you will be able to: - Understand Temporal-Difference learning and Monte Carlo as two strategies for estimating value functions from sampled experience - Understand the importance of exploration, when using sampled experience rather than dynamic programming sweeps within a model - Understand the connections between Monte Carlo and Dynamic Programming and TD. - Implement and apply the TD algorithm, for estimating value functions - Implement and apply Expected Sarsa and Q-learning (two TD methods for control) - Understand the difference between on-policy and off-policy control - Understand planning with simulated experience (as opposed to classic planning strategies) - Implement a model-based approach to RL, called Dyna, which uses simulated experience - Conduct an empirical study to see the improvements in sample efficiency when using Dyna...

人気のレビュー

DP

2021年2月14日

Excellent course that naturally extends the first specialization course. The application examples in programming are very good and I loved how RL gets closer and closer to how a living being thinks.

AA

2020年8月11日

Great course, giving it 5 stars though it deserves both because the assignments have some serious issues that shouldn't actually be a matter. All the other parts are amazing though. Good job

フィルター:

Sample-based Learning Methods: 1 - 25 / 221 レビュー

by JD

2019年9月22日

by Kaiwen Y

2019年10月2日

by hope

2020年1月25日

by Juan C E

2020年3月7日

by Rishi R

2020年8月3日

by Mukund C

2020年3月17日

by Kinal M

2020年1月10日

by Kyle A

2019年10月3日

by Ivan S F

2019年9月29日

by Manuel B

2019年11月28日

by Amit J

2021年2月27日

by Manuel V d S

2019年10月4日

by Maxim V

2020年1月12日

by Andrew G

2019年12月24日

by Bernard C

2020年3月22日

by Maximiliano B

2020年2月23日

by Jonathan B

2020年5月9日

by Steven W

2021年5月11日

by Sandesh J

2020年6月8日

by César S

2021年7月9日

by Yover M C C

2020年4月22日

by Alberto H

2019年10月28日

by Karol P

2021年4月9日

by Pars V

2020年1月5日

by Surya K

2020年4月12日