Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 276 - 300 / 507 レビュー

by Jose M N

2018年5月28日

by Srinivasa R M

2017年9月13日

by Martin A

2017年5月3日

by Manuel M C

2017年3月23日

by Neeraj V D

2018年2月27日

by Abhay D

2018年11月4日

by David M

2017年9月18日

by Liu D

2017年7月26日

by Fernando R

2017年10月28日

by Alejandro R C

2017年8月13日

by Jinfu X

2017年3月12日

by Fedor C

2017年8月31日

by Vasyl Y

2017年6月26日

by Kyle L

2017年6月10日

by Alex S

2018年5月5日

by Jong H S

2017年8月18日

by Jon Z

2017年7月5日

by Salvo

2017年4月23日

by Jay

2017年9月21日

by Atsuya K

2017年10月29日

by Jakub T m G

2017年6月27日

by Benzakoun S

2017年5月8日

by Akash D

2021年7月26日

by bechir n

2020年11月21日

by savitri v v

2018年7月27日