Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 301 - 325 / 507 レビュー

by Jorge B C

2017年5月1日

by Peter S

2017年4月2日

by Z

2017年3月27日

by Canh S L

2017年3月25日

by vijay k k

2018年5月7日

by Hermann H

2017年7月19日

by vikas s

2017年7月28日

by Deleted A

2017年6月26日

by Marija N

2019年7月5日

by Subodh C

2019年3月30日

by Nebiyou T

2017年12月26日

by Dinesh A G

2017年4月2日

by jose r

2017年11月24日

by Konstantin

2017年5月29日

by abhinav

2017年12月10日

by Luis M M S

2017年6月21日

by prashant b

2017年4月7日

by Manish M D

2019年9月16日

by DAVID J A

2018年3月1日

by Rajesh G

2017年12月2日

by Georgi Y

2017年7月7日

by Taneli L

2017年4月10日

by Tal G

2017年4月8日

by Fang Z

2017年4月5日

by Prashant P

2017年5月12日