Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

フィルター:

Big Data Analysis with Scala and Spark: 376 - 400 / 507 レビュー

by Michael R

2019年2月4日

by Ron B

2017年3月18日

by Jose F O

2019年12月25日

by Tony H

2017年11月18日

by Greg J

2019年1月24日

by Tri N

2018年4月29日

by Mark M

2017年11月20日

by Adam R

2021年8月25日

by Prateek G

2017年4月15日

by Miguel D

2017年4月3日

by Srinivas S

2018年10月24日

by Benj L

2020年4月3日

by Changli H

2017年11月17日

by Alisdair W

2017年4月20日

by antonin p

2018年2月25日

by Eduardo

2017年7月16日

by Du L

2018年6月2日

by Yilong W

2018年5月11日

by Vikash S

2020年6月22日

by MAHESH S

2017年7月18日

by Tyler F

2018年10月6日

by Pravina

2018年9月8日

by P.K

2017年7月15日

by Frédéric D

2017年6月18日

by Valter F

2019年5月29日