Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 401 - 425 / 507 レビュー

by Björn W

2017年4月10日

by Evgheni E

2017年3月24日

by Rudolf Z

2017年10月29日

by Jose R

2018年2月8日

by Andrejs A

2020年1月8日

by Léo Z

2017年5月7日

by ANKIT S

2018年10月25日

by Łukasz G

2017年4月25日

by CarloNicolini

2020年4月7日

by Ting T W

2020年5月9日

by Patrik I

2020年1月13日

by Jose P A A

2017年6月29日

by aknin k

2019年12月25日

by Chuishi

2018年1月8日

by Sjoerd T

2017年4月8日

by Sridhar K

2018年9月7日

by Federico A G C

2018年6月30日

by Khalid S

2018年3月25日

by Piotr G

2017年7月5日

by Aaron

2019年12月10日

by Иван М

2017年4月8日

by Kristoffer V

2019年7月3日

by Faisal A

2020年6月29日

by Anuj M

2020年6月21日

by Deepak D

2018年11月23日