Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 426 - 450 / 507 レビュー

by Pedro M

2017年4月29日

by Vahid S

2020年6月27日

by Francis T

2017年4月16日

by Emmanouil G

2017年4月1日

by Gongqi L

2017年4月9日

by kaushik

2017年4月9日

by Mohammad T

2019年8月24日

by Kota M

2018年4月5日

by Anuj A

2020年10月22日

by Wolfgang G

2017年8月30日

by Manuel W

2017年4月18日

by Ruslan A

2017年8月23日

by David G

2017年8月25日

by Yuan R

2018年1月20日

by Guillermo G H

2017年6月30日

by Michaël M P

2019年2月5日

by 林鼎棋

2017年5月29日

by VeeraVenkataSatyanarayana M

2017年6月4日

by Pavel O

2017年8月12日

by Lucas F

2017年5月15日

by Роман В

2018年6月24日

by Park H

2017年4月18日

by Alberto P d P

2017年5月12日

by Dibash B

2022年7月1日