Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

フィルター:

Big Data Analysis with Scala and Spark: 176 - 200 / 507 レビュー

by Ark K

2017年8月6日

by Nicolas D

2017年4月13日

by Joseph C A A

2017年4月7日

by Victoire T

2022年10月21日

by Симкин И М

2019年3月10日

by Javier R C

2017年6月30日

by Andrzej J

2017年3月20日

by Aitor G N

2021年9月27日

by Fábio A R

2019年5月13日

by Alberto C B

2018年6月30日

by Arthur-Lance

2018年9月15日

by Giuliano C

2017年7月2日

by Teng Z

2019年12月26日

by Matthias T

2017年8月17日

by Andreas K

2017年7月26日

by Ramesh K

2017年4月23日

by Fabio P

2020年6月2日

by Karim M

2018年10月15日

by Deleted A

2017年7月11日

by Ronald C M

2019年5月13日

by Francisco D

2018年5月6日

by Mostafa J

2017年6月12日

by AOC

2019年5月17日

by Rafael M C

2017年6月19日

by Beibit

2019年6月27日