Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 51 - 75 / 507 レビュー

by Abhishek K

2020年10月11日

by Dario G

2017年9月8日

by ravisekhar_g

2020年4月18日

by Dennis L

2017年6月6日

by Bora K

2018年9月1日

by 許致軒

2017年4月16日

by Raduś N

2017年5月23日

by Heyang W

2017年8月18日

by Mike D

2017年4月6日

by Jayaprakash J

2017年4月9日

by Heitor M G

2018年2月20日

by Peter T

2017年4月7日

by Eric L

2017年4月9日

by Angel A

2017年5月7日

by PatrickEifler

2020年2月21日

by Alexandr M

2017年6月24日

by Darcio L

2017年4月4日

by Bill P

2019年11月29日

by Jose R

2020年11月15日

by Natalia G

2017年3月28日

by William D

2017年12月2日

by pratik

2017年8月10日

by Enrique M B

2017年5月23日

by Nikola M

2017年4月3日

by Santiago A

2019年9月23日