Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 126 - 150 / 507 レビュー

by joao d s

2017年4月9日

by srinivasa k

2018年1月1日

by OUMOUSS E M

2017年6月18日

by German A S G

2018年4月22日

by Gregory E

2018年3月10日

by Adrian D

2020年12月22日

by Vlad F

2018年3月14日

by Aleksander K

2017年4月2日

by Jevelson S

2017年5月17日

by Wei-Ting C

2017年9月13日

by Roman Z

2017年4月14日

by Tomasz J

2017年4月8日

by Sreeraj R P

2019年1月6日

by Rocky J

2017年5月8日

by Andrey M

2019年1月10日

by Daniele M

2019年6月22日

by Rajesh B

2019年7月16日

by Kolja M

2018年3月25日

by Zdeněk H

2017年7月22日

by radhia b

2020年9月15日

by Marco B

2018年3月16日

by Jijo T

2017年4月13日

by Shashank B

2017年10月15日

by Francois S

2020年9月6日

by 本达 续

2017年8月4日