Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.6
2,565件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 151 - 175 / 507 レビュー

by Nishant T

2017年3月28日

by Alexander Z Q

2017年8月27日

by Roberto S

2017年7月4日

by Ashish D

2020年11月10日

by Tudose B C

2020年2月25日

by Shiyan C

2018年3月6日

by Animesh K

2017年3月17日

by Jiri K

2017年4月7日

by Thomas Z

2018年2月10日

by CAI X

2017年7月16日

by Vishnu P S

2018年5月15日

by Vlad N

2017年4月3日

by Korntewin B

2021年1月27日

by Guixin Z

2017年4月5日

by YEHOUENOU

2019年10月20日

by ANAND B

2019年12月26日

by Shashishekhar D

2018年1月6日

by Santiago C

2022年1月16日

by Merel C H T

2017年6月7日

by Laurent S

2017年4月2日

by Jean-Francois T

2017年3月27日

by Patrick M

2018年1月12日

by Amit K

2017年4月10日

by Huang P

2020年5月22日

by Adel b

2019年4月16日