Chevron Left
Statistics for Data Science with Python に戻る

IBM Skills Network による Statistics for Data Science with Python の受講者のレビューおよびフィードバック

4.6
261件の評価

コースについて

This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts. At the end of the course, you will complete a project to apply various concepts in the course to a Data Science problem involving a real-life inspired scenario and demonstrate an understanding of the foundational statistical thinking and reasoning. The focus is on developing a clear understanding of the different approaches for different data types, developing an intuitive understanding, making appropriate assessments of the proposed methods, using Python to analyze our data, and interpreting the output accurately. This course is suitable for a variety of professionals and students intending to start their journey in data and statistics-driven roles such as Data Scientists, Data Analysts, Business Analysts, Statisticians, and Researchers. It does not require any computer science or statistics background. We strongly recommend taking the Python for Data Science course before starting this course to get familiar with the Python programming language, Jupyter notebooks, and libraries. An optional refresher on Python is also provided. After completing this course, a learner will be able to: ✔Calculate and apply measures of central tendency and measures of dispersion to grouped and ungrouped data. ✔Summarize, present, and visualize data in a way that is clear, concise, and provides a practical insight for non-statisticians needing the results. ✔Identify appropriate hypothesis tests to use for common data sets. ✔Conduct hypothesis tests, correlation tests, and regression analysis. ✔Demonstrate proficiency in statistical analysis using Python and Jupyter Notebooks....

人気のレビュー

JL

2021年1月19日

The final assignment is very well designed, I was able to review the entire course material and consolidate the learning. I have now a good understanding of hypothesis testing.

HD

2021年1月13日

A well structured course, simple and direct to the point, with a little of exercising you'll come out with a huge understanding of the statistical concepts.

フィルター:

Statistics for Data Science with Python: 1 - 25 / 61 レビュー

by Brandon B

2021年1月17日

by Hưng V

2021年5月28日

by cynthia e

2020年11月16日

by Ofure E

2020年11月3日

by Zara U

2020年11月9日

by Nabilla A

2020年11月9日

by Alfred K S

2020年12月29日

by Domenic P

2022年5月18日

by Ebenezer D

2020年11月20日

by Pritesh V

2022年8月25日

by Heinz D

2021年2月7日

by Andreas F

2021年2月21日

by Robert S

2021年4月6日

by Elizabeth T

2021年6月15日

by Lucian P

2022年1月18日

by Anastasiya K

2021年2月12日

by Jaelin L

2022年3月22日

by Jason C

2021年9月12日

by Himanshu D

2022年4月2日

by Marcelo d C

2021年12月1日

by Joao L

2021年1月20日

by Hichem D

2021年1月14日

by Yodefia R

2021年7月27日

by Ajay K S

2022年5月3日

by Piotr K

2022年5月30日