Chevron Left
Survival Analysis in R for Public Health に戻る

インペリアル・カレッジ・ロンドン(Imperial College London) による Survival Analysis in R for Public Health の受講者のレビューおよびフィードバック

4.5
279件の評価

コースについて

Welcome to Survival Analysis in R for Public Health! The three earlier courses in this series covered statistical thinking, correlation, linear regression and logistic regression. This one will show you how to run survival – or “time to event” – analysis, explaining what’s meant by familiar-sounding but deceptive terms like hazard and censoring, which have specific meanings in this context. Using the popular and completely free software R, you’ll learn how to take a data set from scratch, import it into R, run essential descriptive analyses to get to know the data’s features and quirks, and progress from Kaplan-Meier plots through to multiple Cox regression. You’ll use data simulated from real, messy patient-level data for patients admitted to hospital with heart failure and learn how to explore which factors predict their subsequent mortality. You’ll learn how to test model assumptions and fit to the data and some simple tricks to get round common problems that real public health data have. There will be mini-quizzes on the videos and the R exercises with feedback along the way to check your understanding. Prerequisites Some formulae are given to aid understanding, but this is not one of those courses where you need a mathematics degree to follow it. You will need basic numeracy (for example, we will not use calculus) and familiarity with graphical and tabular ways of presenting results. The three previous courses in the series explained concepts such as hypothesis testing, p values, confidence intervals, correlation and regression and showed how to install R and run basic commands. In this course, we will recap all these core ideas in brief, but if you are unfamiliar with them, then you may prefer to take the first course in particular, Statistical Thinking in Public Health, and perhaps also the second, on linear regression, before embarking on this one....

人気のレビュー

LA

2020年7月2日

Great course superb support and very clear professor. This course is a good motivator to continue to explore public health and statistics.

VV

2019年8月26日

Good and practical introduction to survival analysis. I liked the emphasis on how to deal with practical data sets and data problems.

フィルター:

Survival Analysis in R for Public Health: 1 - 25 / 62 レビュー

by Todd D

2019年11月25日

by Aboozar H

2019年3月6日

by Amir A H

2019年5月16日

by Paco C

2020年7月22日

by Kenil C

2020年2月8日

by sreya k

2020年1月4日

by Victoria D

2019年8月26日

by Retham L

2020年5月11日

by SAVINO S

2020年9月30日

by Merce G P

2020年5月25日

by Eleanor H

2020年6月11日

by Nevin J

2020年2月1日

by Qusai A K A A

2020年11月26日

by Lucas G

2020年11月12日

by 朱永載

2021年12月30日

by Lesaffre A

2020年7月3日

by Xiyang S

2020年5月10日

by Assal h

2019年8月2日

by Roxana P

2020年12月29日

by Kaoma M M

2020年5月30日

by Karina S

2019年11月12日

by Rahul R

2020年12月31日

by Hương G P

2020年5月22日

by Sergio P

2019年11月7日

by ITALO E S E S

2021年5月18日