Chevron Left
Convolutions for Text Classification with Keras に戻る

Coursera Project Network による Convolutions for Text Classification with Keras の受講者のレビューおよびフィードバック

4.7
126件の評価

コースについて

Welcome to this hands-on, guided introduction to Text Classification using 1D Convolutions with Keras. By the end of this project, you will be able to apply word embeddings for text classification, use 1D convolutions as feature extractors in natural language processing (NLP), and perform binary text classification using deep learning. As a case study, we will work on classifying a large number of Wikipedia comments as being either toxic or not (i.e. comments that are rude, disrespectful, or otherwise likely to make someone leave a discussion). This issue is especially important, given the conversations the global community and tech companies are having on content moderation, online harassment, and inclusivity. The data set we will use comes from the Toxic Comment Classification Challenge on Kaggle. To complete this guided project, we recommend that you have prior experience in Python programming, deep learning theory, and have used either Tensorflow or Keras to build deep learning models. We assume you have this foundational knowledge and want to learn how to use convolutions in NLP tasks such as classification. Note: This course works best for learners based in the North America region. We’re currently working on providing the same experience in other regions....

人気のレビュー

RT

2020年7月25日

Good explanation about how to work with pretrained embeddings, but works too slow

RD

2020年7月14日

Very good project to understand the use of convolution in text data.

フィルター:

Convolutions for Text Classification with Keras: 1 - 14 / 14 レビュー

by Kinjal S P

2020年9月30日

by RUDRA P D

2020年7月15日

by Mesut Y

2020年11月23日

by Yaron K

2021年6月18日

by Ruslan T

2020年7月26日

by Gangone R

2020年7月3日

by Salvador C A

2022年6月8日

by Md. R Q S

2020年9月17日

by tale p

2020年6月28日

by Md. R A

2020年6月27日

by Ashwin P

2020年6月26日

by p s

2020年6月26日

by Simon S R

2020年9月4日

by Liao H

2020年7月12日