Diabetes Prediction With Pyspark MLLIB

4.6

17件の評価

提供:
このガイド付きプロジェクトでは、次のことを行います。
1.5 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this 1 hour long project-based course, you will learn to build a logistic regression model using Pyspark MLLIB to classify patients as either diabetic or non-diabetic. We will use the popular Pima Indian Diabetes data set. Our goal is to use a simple logistic regression classifier from the pyspark Machine learning library for diabetes classification. We will be carrying out the entire project on the Google Colab environment with the installation of Pyspark.You will need a free Gmail account to complete this project. Please be aware of the fact that the dataset and the model in this project, can not be used in the real-life. We are only using this data for the educational purpose. By the end of this project, you will be able to build the logistic regression classifier using Pyspark MLlib to classify between the diabetic and nondiabetic patients.You will also be able to setup and work with Pyspark on Google colab environment. Additionally, you will also be able to clean and prepare data for analysis. You should be familiar with the Python Programming language and you should have a theoretical understanding of the Logistic Regression algorithm. You will need a free Gmail account to complete this project. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Data Science

  • Machine Learning

  • Python Programming

  • Google colab

  • PySpark

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

DIABETES PREDICTION WITH PYSPARK MLLIB からの人気レビュー

すべてのレビューを見る

よくある質問