Chevron Left
Exploratory Data Analysis with Seaborn に戻る

Coursera Project Network による Exploratory Data Analysis with Seaborn の受講者のレビューおよびフィードバック

4.6
401件の評価

コースについて

Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results.In this project-based course, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) Data Set. We will cover key concepts in exploratory data analysis (EDA) using visualizations to identify and interpret inherent relationships in the data set, produce various chart types including histograms, violin plots, box plots, joint plots, pair grids, and heatmaps, customize plot aesthetics and apply faceting methods to visualize higher dimensional data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

人気のレビュー

HP

2020年9月7日

This project is great for people go want to advances her career exploring new viz techniques. The instructor is great, clear and easy to follow. I will definitely recommend to take this project.

PG

2020年10月3日

As a beginner, this was a very good insight into EDA for me. You will however, have to read the documentation and more articles to go in-depth. However, this is a very good introductory course.

フィルター:

Exploratory Data Analysis with Seaborn: 1 - 25 / 67 レビュー

by Ravi K

2020年4月21日

by Rob O

2020年4月23日

by Anees A

2020年5月3日

by Suhaimi C

2020年11月18日

by Pavithra K

2020年8月1日

by Abhijit T

2020年4月9日

by ASHISH M

2020年5月3日

by Ujjwal K

2020年5月10日

by Punam P

2020年5月15日

by Mukund P

2020年5月13日

by Rishabh R

2020年5月17日

by Dr M M S

2020年11月8日

by Shri H

2020年11月7日

by Nesmary G M D

2022年5月14日

by RADUL R D

2020年6月12日

by Hector P

2020年9月7日

by Pawan K G

2020年10月4日

by Sayak P

2020年6月26日

by Asmae A

2022年4月10日

by HAY a

2020年6月29日

by Aditya T

2020年11月5日

by Gourav K

2020年7月27日

by Srikanth C

2020年6月16日

by Carlos O G M

2022年11月1日

by omkar

2020年6月10日