Chevron Left
Predicting Credit Card Fraud with R に戻る

ノーステキサス大学 による Predicting Credit Card Fraud with R の受講者のレビューおよびフィードバック

4.5
27件の評価

コースについて

Welcome to Predicting Credit Card Fraud with R. In this project-based course, you will learn how to use R to identify fraudulent credit card transactions with a variety of classification methods and use R to generate synthetic samples to address the common problem of classification bias for highly imbalanced datasets—the class of interest (fraud) represents less than 1% of the observations. Class imbalance can make it difficult to detect the effect independent variables have on fraud, ultimately leading to higher misclassification rates. Fixing the imbalance allows the minority class (fraud) to be better learned by the classifier algorithms. After completing the project, you will be able to apply the methods introduced in the project to a wide range of classification problems that typically confront class imbalance, including predicting loan default, customer churn, cancer diagnosis, early high school dropout risk, and malware detection. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

人気のレビュー

JB

2021年4月2日

Very intriguing course and example application. Very informative and practical approaches to addressing imbalances in data. Excellent instructor and great course.

RV

2021年2月3日

It is best guided project which helps to learn caret library and this helped me to increase my r programming skills

フィルター:

Predicting Credit Card Fraud with R: 1 - 8 / 8 レビュー

by Vicente C K

2021年5月3日

by James B

2021年4月2日

by RASHIKA D

2020年11月12日

by Ramachandra A V

2021年2月4日

by Jason M

2021年4月7日

by Charles S

2021年12月9日

by Gary M

2021年4月8日

by kuo j

2022年3月26日