TensorFlow Serving with Docker for Model Deployment

4.8

52件の評価

提供:

4,619人がすでに登録済みです

このガイド付きプロジェクトでは、次のことを行います。
1.5 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

This is a hands-on, guided project on deploying deep learning models using TensorFlow Serving with Docker. In this 1.5 hour long project, you will train and export TensorFlow models for text classification, learn how to deploy models with TF Serving and Docker in 90 seconds, and build simple gRPC and REST-based clients in Python for model inference. With the worldwide adoption of machine learning and AI by organizations, it is becoming increasingly important for data scientists and machine learning engineers to know how to deploy models to production. While DevOps groups are fantastic at scaling applications, they are not the experts in ML ecosystems such as TensorFlow and PyTorch. This guided project gives learners a solid, real-world foundation of pushing your TensorFlow models from development to production in no time! Prerequisites: In order to successfully complete this project, you should be familiar with Python, and have prior experience with building models with Keras or TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Deep Learning

  • Docker

  • TensorFlow Serving

  • Tensorflow

  • model deployment

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

TENSORFLOW SERVING WITH DOCKER FOR MODEL DEPLOYMENT からの人気レビュー

すべてのレビューを見る

よくある質問