Traffic Sign Classification Using Deep Learning in Python/Keras

4.6

359件の評価

提供:

10,428人がすでに登録済みです

このガイド付きプロジェクトでは、次のことを行います。
2 hours
中級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Import Key libraries, dataset and visualize images. - Perform image normalization and convert from color-scaled to gray-scaled images. - Build a Convolutional Neural Network using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

あなたが開発するスキル

  • Deep Learning

  • Artificial Intelligence (AI)

  • Machine Learning

  • Python Programming

  • Computer Vision

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

TRAFFIC SIGN CLASSIFICATION USING DEEP LEARNING IN PYTHON/KERAS からの人気レビュー

すべてのレビューを見る

よくある質問