Chevron Left
XG-Boost 101: Used Cars Price Prediction に戻る

Coursera Project Network による XG-Boost 101: Used Cars Price Prediction の受講者のレビューおよびフィードバック

4.6
34件の評価

コースについて

In this hands-on project, we will train 3 Machine Learning algorithms namely Multiple Linear Regression, Random Forest Regression, and XG-Boost to predict used cars prices. This project can be used by car dealerships to predict used car prices and understand the key factors that contribute to used car prices. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind XG-Boost Algorithm - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn, Plotly and Word Cloud. - Standardize the data and split them into train and test datasets.   - Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn. - Assess the performance of regression models using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

人気のレビュー

フィルター:

XG-Boost 101: Used Cars Price Prediction : 1 - 7 / 7 レビュー

by Md. M I C

2021年3月18日

by Satyajit N

2021年2月22日

by Gregory G J

2021年1月14日

by F 1 B

2022年8月9日

by Paúl A A V

2021年3月10日

by Shadi Q

2022年7月14日

by Akash S C

2021年5月29日