Chevron Left
Introduction to Accounting Data Analytics and Visualization に戻る

イリノイ大学アーバナ・シャンペーン校(University of Illinois at Urbana-Champaign) による Introduction to Accounting Data Analytics and Visualization の受講者のレビューおよびフィードバック

4.8
403件の評価

コースについて

Accounting has always been about analytical thinking. From the earliest days of the profession, Luca Pacioli emphasized the importance of math and order for analyzing business transactions. The skillset that accountants have needed to perform math and to keep order has evolved from pencil and paper, to typewriters and calculators, then to spreadsheets and accounting software. A new skillset that is becoming more important for nearly every aspect of business is that of big data analytics: analyzing large amounts of data to find actionable insights. This course is designed to help accounting students develop an analytical mindset and prepare them to use data analytic programming languages like Python and R. We’ve divided the course into three main sections. In the first section, we bridge accountancy to analytics. We identify how tasks in the five major subdomains of accounting (i.e., financial, managerial, audit, tax, and systems) have historically required an analytical mindset, and we then explore how those tasks can be completed more effectively and efficiently by using big data analytics. We then present a FACT framework for guiding big data analytics: Frame a question, Assemble data, Calculate the data, and Tell others about the results. In the second section of the course, we emphasize the importance of assembling data. Using financial statement data, we explain desirable characteristics of both data and datasets that will lead to effective calculations and visualizations. In the third, and largest section of the course, we demonstrate and explore how Excel and Tableau can be used to analyze big data. We describe visual perception principles and then apply those principles to create effective visualizations. We then examine fundamental data analytic tools, such as regression, linear programming (using Excel Solver), and clustering in the context of point of sale data and loan data. We conclude by demonstrating the power of data analytic programming languages to assemble, visualize, and analyze data. We introduce Visual Basic for Applications as an example of a programming language, and the Visual Basic Editor as an example of an integrated development environment (IDE)....

人気のレビュー

YH

2020年5月30日

It teaches us the basics of data analytics and it is very progressive. There are assignments to help us understand and practice the methods being taught. This allows us to have first-hand experiences.

CT

2021年11月6日

I have learn a lot of solid knowledge about Data Visualization, Excel VBA, and programming hints from this course. I recommend this course to those who wants to skill up on Excel and Data analytic.

フィルター:

Introduction to Accounting Data Analytics and Visualization: 1 - 25 / 80 レビュー

by Md. S I

2021年2月7日

by Christopher A

2019年8月28日

by Michael P

2020年2月21日

by Alex E

2021年5月23日

by Mak J W

2020年6月16日

by Mok W Q R

2020年7月4日

by Mark A

2021年7月7日

by Zong H T

2020年5月31日

by Sheah D Z

2020年6月12日

by Alison Z

2019年11月8日

by Lim J H G

2020年6月4日

by Amelia S

2020年6月29日

by Anna K

2020年11月4日

by Maria M S

2020年9月4日

by Damien C L S

2020年7月2日

by Gypsy G G

2020年8月5日

by Bradford M

2022年6月15日

by Maria M

2021年6月27日

by Kan L

2020年7月9日

by TAN W K

2020年7月7日

by Kevin B

2021年9月7日

by Dedunupiti G S K

2022年8月19日

by SALMAN M

2022年6月28日

by Badal S

2020年10月13日

by Lim J N G

2020年8月11日